• Title/Summary/Keyword: promoting growth

Search Result 1,440, Processing Time 0.034 seconds

Clonal Propagation in Commiphora Wightii (Arnott.) Bhandari

  • Mishra, Dhruv Kumar;Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.218-225
    • /
    • 2014
  • Studies were carried out to standardize and develop a suitable macro-propagation technology for large scale production of superior clonal stock through stem cuttings in Commiphora wightii Arnott (Bhandari), a data deficient medicinal plant of arid region. For the purpose, three experiments were conducted. The first experiment was tried to elucidate the impact of various cutting diameters (0.50-0.75 cm, 0.75-1.00 cm, 1.00-1.50 cm, and >1.50 cm) in combination with varying growing conditions (sunlight, shade house and mist chamber) on shoot sprouting and rooting without using exogenous plant growth regulators. Cutting diameter (size 0.75-1.00 cm) in mist chamber has shown maximum sprouting (90.00%) and rooting (73.33%), primary root (6.67) and secondary root (16.67) followed by 1.00-1.51 cm in mist chamber. Minimum sprouting (40.00%), rooting (33.33%), number of shoot (1.33), primary root (1.00) and number of secondary root (1.00) was recorded in cutting diameter (size >1.50 cm) in sunlight. Second experiment was performed to find out optimum growth regulator concentration of rooting hormone (100, 200, 500 and 1000 ppm) of Indole-3-acetic acid (IAA) and Indole-3-butyric Acid (IBA) on adventitious root formation on cuttings diameter (size 0.25-0.50 cm) in comparison to control. Maximum rooting percentage (93.33%) was recorded in 200 ppm followed by 500 ppm (86.66%) of IBA as compared to control, which showed only 60 per cent sprouting. Third experiment was performed with newly formed juvenile micro-cuttings treated with varying concentrations of IAA and IBA. The juvenile cuttings (size 6-10 cm, basal dia <0.25 cm) were selected as micro-cuttings. The cuttings treated with IBA (500 ppm) showed 64.30% rooting as compared to other treatments. Results of above experiments indicate that cuttings (size 0.75-1.00 cm dia) may be developed in mist chamber for better performance. While using heavier cuttings, no growth promoting hormones is required however; growth regulator 200 ppm concentration of IBA rooting hormone was observed optimum for promoting macro-propagation in stem cuttings of lower diameter class (0.25-0.50 cm).

Hair-growth Promoting Effect of Grateloupia elliptica Via the Activation of Wnt Pathway (참도박의 Wnt 경로 활성화를 통한 모발성장 효과)

  • Kang, Jung-Il;Kim, Sang-Cheol;Jeon, You-Jin;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Grateloupia elliptica has been reported to have the proliferation effect of dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. In the present study, we examined in vitro and in vivo hair growth-promoting effect of Grateloupia elliptica. When isolated rat vibrissa follicles were treated with extract of G. elliptica, the hair-fiber lengths of the vibrissa follicles significantly increased. Furthermore, the G. elliptica extract accelerated the telogen-angen transition in C57BL/6 mice. To investigate the molecular mechanisms of the G. elliptica extract on the proliferation of DPCs, we examined the activation of $wnt/{\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. The G. elliptica extract activated $wnt/{\beta}$-catenin signaling via the increase of ${\beta}$-catenin and phospho-$GSK3{\beta}$. In addition, the G. elliptica extract increased the level of cyclin E and CDK2, while the level of $p27^{kip1}$ was decreased. These results suggest that the the G. elliptica extract may induce hair growth by proliferation of DPCs via cell-cycle progression and the activation of $Wnt/{\beta}$-catenin signaling.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Hair-growth Promoting Effect of Microneedle Roller Therapy (미세침요법의 모발성장효과)

  • Lee, Chang Hyun;Lee, Ji Yeon;Shin, Hyun Jong;Ha, Ki Tae;Seo, Hyung Sik;Jeong, Han Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • Micro needle roller therapy has been used for cosmetic purposes, such as reducing skin winkles and improving elasticity of skin. It is claimed that micro needle roller therapy has potentials for connective tissue regeneration by facilitating collagen synthesis. Therefore, there seems to be a possibility that connective tissue regenerating potential of micro needle roller therapy could influence the hair growth cycle. This study, we investigated the hair growth-promoting effects of micro needle roller therapy. C57BL/6 mice were devided into three groups as follows: normal saline-treated, minoxidil-treated, and micro needle roller therapy-received group. Hair growth activity was evaluated by handscopic and microscopic observations. Sections of dorsal skin were stained with hematoxylin and eosin. Expression of BrdU, FGF, and VEGF was detected by immunohistochemical staining. Micro needle roller therapy enhanced the development of hair follicle during anagen. Immunohistochemical analysis revealed that micro neeld roller therapy incresed the expression of BrdU and FGF in the hair follicles of C57BL/6 mice. Furthermore, micro needle roller therapy upregulated mRNA expression of VEGFR-2, FGF-2, EGF - growth factors that play a central role in hair follicle development during anagen. These results suggest that Micro needle roller therapy can potentially be used for the treatment of alopecia.

Plant growth promoting rhizobacteria influence potato tuberization through enhancing lipoxygenase activity

  • Akula, Nookaraju;Upadhyaya, Chandrama P.;Kim, Doo-Hwan;Chun, Se-Chul;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.18-18
    • /
    • 2010
  • Molecular insights on the role of plant growth promoting rhizobacteria (PGPR) in potato tuberization are reported in the present study. The PGPRwere isolated from the soil collected from potato fields of Highland Agricultural Research Centre, Pyeongchang, Korea and they were identified to the genus level based on the 16S rRNA sequence analysis. These PGPR were heat-killed, filtered and the filtrates were addedindividually at a concentration of $10^7\;cfu\;mL^{-1}$ in MS (Murashige and Skoog's) medium supplemented with 7% (w/v) sucrose to study their influence on in vitro potato tuberization. Tuber initiation occurred early in untreated control, while tuber growth was pronounced in case of PGPR treatments. The control explants showed tuber formation as a result of sub-apical swelling of stolons while several sessile tubers formed directly in the axils of nodal cuttings in case of PGPR treatments, which is an indication of strong induction for tuberization. Theexplants cultured on MS medium supplemented with bacterial isolate 6 (Bacillus firmus strain 40) showed highest average tuber yield (Ca. 12.56 g per treatment) after 30 days of culture, which was 3 folds increase over the untreated control. A significant increase in lipoxygenase (LOX1) mRNA expression and activity of LOX enzyme were also detected in the tubers induced on PGPR treatments as compared to untreated control. This LOX expression level correlated with increased tuber growth and tuber yield. Further studies focused on the role of bacteria cell wall components, growth regulators and signal molecules released by PGPR are under investigation to elicit clues for PGPR-mediated signal pathway controlling potato tuberization.

  • PDF

Plant Growth Promoting Fungi Isolated from Rhizosphere of Zoysiagrass in Korea (잔디 근권에서 분리한 식물생장촉진 균류)

  • Park, Myung-Soo;Yu, Seung-Hun
    • The Korean Journal of Mycology
    • /
    • v.33 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • Fifteen PGPF (plant growth promoting fungi) isolates were selected from 728 fungal isolates collected from rhizosphere of zoysiagrass in Korea. Identification of the 15 isolates was based on their morphological characteristics. They were classified as Gliocladium sp. (n=1), Penicillium sp. (n=5), Trichoderma sp. (n=3), Fusarium sp. (n=3), and unidentifed species (n=3). Of the 15 isolates, six (PF-31, PF-136, PF-238, PF-255, PF-395, PF-420) significantly promoted the growth of tomato seedlings, and three (PF-31, PF-101, PF-255) also promoted the growth of hot pepper and two (PF-31, PF-225) also promoted the growth of cucumber, The 15 PGPF isolates were divided into 4 groups based on root colonizing ability. Isolates PF-17, PF-101 and PF-225 were included in the group 1, which had high root colonizing ability.

Effects of Various Plant Growth Promoting Rhizobacteria on the Early Growth of Red Pepper Seedlings, Capsicum annuum L. cv. Nockkwang (數種의 植物生長促進 根圈細菌이 '녹광' 고추 幼苗의 初期生長에 미치는 影響)

  • Cho, Ja-Yong;Chung, Soon-Ju
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.137-146
    • /
    • 1998
  • Various rhizobacteria was isolated, and was bacterialized into the substrates to clarify the plant growth promoting effects of rhizobacteria on the early growth of red peper seedlings. Total 125 bacterial isolates were primarily isolated and purified from the soils in greenhouse. And four strains were finally screened, based on the antifungal activities against Fusarium sp., Pythium sp. and Rhizoctonia sp. of red pepper plants. The strongest antifungal strain RB 109 has a antagonistic activity against Fusarium sp., Pythium sp. and Rhizoctonia sp. in terms of 66.0%, 65.0% and 66.1%. Early growth of red pepper seedlings was promoted, when cultured solution of rhizobacteria RB 109 was bacterialized into the substrates. Antifungal rhizobacteria RB 109 was identified as Pseudomonas sp. related strains, which has a similarity of 82% to the Pseudomonas sp.

  • PDF

Gibberellic Acid and Cold Stratification Promotes Seed Germination and Seedling Growth in Kadsura coccinea (GA3처리와 저온습윤처리에 의한 흑노호(Kadsura coccinea)의 종자발아 및 유묘생장 촉진)

  • Byoung Il Je;Joonng Suk Jeon;Jum-Soon Kang;Young Whan choi
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.77-88
    • /
    • 2023
  • Kadsura coccinea (Lem.) A.C. Smith is used as a medicinal plant and cosmetic material in China and Southeast Asia. To mass-produce Kadsura coccinea seedlings, the effects of gibberellic acid (GA3) and cold stratification treatments on seed germination were investigated. Seed germination rate with GA3 treatment was most effective at concentrations of 250 or 500 mg/L. With respect to mean germination time (MGT), mean daily germination, and T50 (days to reach 50% seed germination), the germination-promoting effect was improved as the concentration of GA3 increased. Stem growth of seedlings was the highest following GA3 treatments of 250 and 500 mg/L, and the growth promoting effect gradually decreased as the concentration of GA3 decreased. Root growth was stimulated at GA3 concentrations of 250-1,000 mg/L. Examination of the effect of stratification treatment for 15, 30 and 60 days at temperatures of 0, 5 and 10℃ on the germination rate revealed that the most stratification treatment temperature was 10℃, and the results improved with longer treatment periods. Altogether, GA3 and stratification treatments improved the seed germination rate, shortened the MGT, improved germination uniformity, and produced healthy seedlings.

Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains (식물 유용 방선균 2종의 배양 및 포자생성 최적화 조건 탐색)

  • Da-Ran Kim;Youn-Sig Kwak
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.174-183
    • /
    • 2023
  • The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.

Hormonal Effect and Cytokinin Autonomy in callus Culture of Phaseolus vulgaris L. (식물 Hormone의 영향과 Cytokinin Autonomy)

  • 김상구
    • Journal of Plant Biology
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 1982
  • The activities of auxins and cytokinins have been examined in the growth of callus tissue derived from Phaseolus vulgaris L. cv. Damyang. The synthetic auxin, picloram was the most effective in promoting callus growth and the range of effective concentrations (0.1$\mu{M}$ to 32$\mu{M}$) was broad. 2, 4-D also enhanced callus growth at the optimal concentration of 3.2$\mu{M}$. NAA promoted callus growth at relatively higher concentrations than other auxins tested. IAA was less effective in supporting callus growth. Cytokinin bearing saturated side chain ($N^6$-isopentyladenine) was approximately 30 times more active than the corresponding unsaturated compound, $N^6$-($\D^2$-isopentenyl) adenine. The abilities of cytokinin-autonomous growth were also examined. Callus tissues previously grown on concentrations lower and/or higher than optimal concentrations of cytokinins were better habituated in the subsequent passage. It was suggested that the development of cytokinin autonomy may be related to dosage-concentrations of cytokinin in the previous passage.

  • PDF