• 제목/요약/키워드: promoter replacement

검색결과 18건 처리시간 0.021초

Increase of a Fibrinolytic Enzyme Production through Promoter Replacement of aprE3-5 from Bacillus subtilis CH3-5

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.833-839
    • /
    • 2021
  • Bacillus subtilis CH3-5 isolated from cheonggukjang secretes a 28 kDa protease with a strong fibrinolytic activity. Its gene, aprE3-5, was cloned and expressed in a heterologous host (Jeong et al., 2007). In this study, the promoter of aprE3-5 was replaced with other stronger promoters (Pcry3A, P10, PSG1, PsrfA) of Bacillus spp. using PCR. The constructed chimeric genes were cloned into pHY300PLK vector, and then introduced into B. subtilis WB600. The P10 promoter conferred the highest fibrinolytic activity, i.e., 1.7-fold higher than that conferred by the original promoter. Overproduction of the 28 kDa protease was confirmed using SDS-PAGE and fibrin zymography. RT-qPCR analysis showed that aprE3-5 expression was 2.0-fold higher with the P10 promoter than with the original promoter. Change of the initiation codon from GTG to ATG further increased the fibrinolytic activity. The highest aprE3-5 expression was observed when two copies of the P10 promoter were placed in tandem upstream of the ATG initiation codon. The construct with P10 promoter and ATG and the construct with two copies of P10 promoter in tandem and ATG exhibited 117% and 148% higher fibrinolytic activity, respectively, than that exhibited by the construct containing P10 promoter and GTG. These results confirmed that significant overproduction of a fibrinolytic enzyme can be achieved by suitable promoter modification, and this approach may have applications in the industrial production of AprE3-5 and related fibrinolytic enzymes.

Application of Adenovirus-Mediated Human Telomerase Catalytic Subunit(hTERT) Gene Promoter in Ovarian Cancer Gene Therapy

  • Song, Joon-Seok;Yoon, Won-Suck;Lee, Kyu-Wan;Kim, Mee-Hye;Kim, Kyung-Tai;Kim, Hy-Sook;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.517-521
    • /
    • 2003
  • Telomerase is a ribonucleoprotein complex whose function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, telomerase RNA template (hTR) and catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. In this report, the possibility of utilization of the hTERT promoter in targeted cancer gene therapy was tested. The hTERT promoter was cloned in the replacement of the CMV promoter, and the HSV-TK gene was subcloned to be controlled by the hTERT gene promoter in the adenovirus shuttle plasmid. Then, the recombinant adenovirus Ad-hT-TK was constructed and was infected into normal and human gynecological cancer cell lines. The selective tumor specific cell death by Ad-hT-TK was identified through these experiments, showing that Ad-hT-TK could be used for targeted cancer gene therapy.

Cryparin 유전자의 promoter 분석을 위한 cryparin 유전자 치환체의 순수 제조 (Construction of a Pure Cryparin-null Mutant for the Promoter Analysis of Cryparin Gene)

  • 김명주;양문식;김대혁
    • 한국균학회지
    • /
    • 제26권4호통권87호
    • /
    • pp.450-457
    • /
    • 1998
  • Cryparin은 Cryphonectria parasitica의 세포벽에 풍부한 소수성 단백질에 속한다. cryparin은 비록 하나의 유전자에 의해 발현되지만 액체배양 후 48시간이 지나면 발현된 전체 유전자중에서 22%를 차지할 정도의 높은 발현 양상을 나타낸다. 또한 cryparin은 RNA mycovirus인 Cryphonectria hypovirus 1의 감염에 의해 발현이 현저히 억제되는 유전자로 알려졌다. 이미 지난 실험(Kim et al., 1999)에서 상동염색체간의 재조합을 이용하여 cryparin 유전자를 항생제 hygromycin B 저항성 유전자로 치환한 치환체를 제조하였다. 발현율이 매우 높으면서도 virus에 의해 밀접하게 영향받는 cryparin 유전자의 promoter 분석을 위하여서는 대상이 되는 유전자 치환을 위한 vector만을 포함하며, 분석에 이용될 여러 유전자 운반체들이 어느 한곳에만 삽입되도록 하는 성질을 가진 균주의 개발이 필요하다. 그러나 지난번 실험의 결과 얻어진 cryparin 치환체는 치환용 vector외에도 무작위로 삽입된 vector가 존재하고 나아가 새로운 vector들이 어느 한곳에만 삽입되도록 하는 성질을 갖지 못하였다. 따라서 본 실험에서는 cryparin 유전자 치환체와 영양요구성 돌연변이체인 균주간의 교잡을 이용하여 분석 대상이 되는 유전자의 치환에 이용된 vector만을 포함하며, 분석에 이용될 여러 유전자 운반체들이 genome내의 어느 한곳에만 삽입되도록 하는 성질을 가진 균주를 제조하였다.

  • PDF

Chemosensitization of Human Ovarian Carcinoma Cells by a Recombinant Adenoviral Vector Containing L-plastin Promoter Fused to Cytosine Deaminase Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • 제13권3호
    • /
    • pp.143-149
    • /
    • 2005
  • We have demonstrated previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase (CD) gene is driven by the tumor-specific L-plastin promoter. The object of this study was to evaluate the efficacy of AdLPCD together with 5-fluorocytosine (5-FC) in suppression of the growth of established human tumor cells of ovary, Consistent with the knowledge that infection of OVCAR-3 cells with AdLPCD resulted in expression of a functional intracellular CD enzyme capable of converting 5-FC to 5-fluorouracil (5-FU) (Chung and Deisseroth, 2004), statistically significant differences in cytotoxicity were observed when AdLPCD infected cells were also exposed to 5-FC for 6 days (p=0.05), 9 days (p<0.0005) and 12 days (p<0.005), compared to 5-FC exposure alone, These results indicate that the CD gene delivered by adenoviral vector could efficiently sensitize OVCAR-3, otherwise non-toxic 5-FC. On the other hand, SKOV-3 cells, an ovarian carcinoma cell line, were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The results of present study suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Importance of Nucleotides Adjacent to the Core Region of Diphtheria tox Promoter/Operator

  • Lee, John-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.622-627
    • /
    • 2002
  • Diphtheria toxin repressor (DtxR) binds to approximately 30 to 35-bp regions containing an interrupted 9-bp inverted repeat within a 19-bp core sequence. The core sequence is fairly conserved and critical for DtxR binding. The flanking regions that are consisted of 5 to 8 more of nucleotides from the core are also required for DtxR binding. The nucleotides in both flanking regions are A-T rich. To examine whether the A-T nucleotides in both flanking regions from the core have significant roles for DtxR binding, a DNA fragment was constructed based on the diphtheria tox promoter/operator, and DNA fragments with substitution of A and T nucleotides In the flanking regions to G and C were also constructed. To assess the effect of these substitutions on binding of DtxR and repressibility by DtxR, $\beta$-galactosidase activity from lacZ fused to the region was assessed. Gel mobility shift of the region by purified DtxR was also examined. The DNA fragments containing the mutations in the flanking regions still exhibited repression and mobility shift with DtxR. The core segment with the mutation is still, therefore, recognized by DtxR. Nonetheless, the results from the assays indicated that the substitution significantly decreased repression of the operator by DtxR in vivo under high-iron condition and decreased binding of DtxR to the operator. These results suggest that A and T nucleotides fur both flanking regions are preferred for the binding of DtxR.

A Modified PCR-Directed Gene Replacements Method Using $lambda$-Red Recombination Functions in Escherichia coli

  • KIM SANG-YOON;CHO JAE-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1346-1352
    • /
    • 2005
  • We have developed a modified gene replacement method using PCR products containing short homologous sequences of 40- to 50-nt. The method required $\lambda$-Red recombination functions provided under the control of a temperature-sensitive CI857 repressor expressed from the $P_{lac}$ promoter in the presence of IPTG on an easily curable helper plasmid. The method promoted the targeted gene replacements in the Escherichia coli chromosome after shifting cultures of the recombinogenic host, which carries the helper plasmid, to $42^{\circ}C$ for 15 min. Since this method employs $\lambda$-Red recombination functions expressed from the easily curable helper plasmid, multiple rounds of gene replacements in the E. coli chromosome would be possible. The procedures described herein are expected to be widely used for metabolic engineering of E. coli and other bacteria.

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

Enhanced Green Fluorescent Protein Gene under the Regulation of Human Oct4 Promoter as a Marker to Identify Reprogramming of Human Fibroblasts

  • Heo, Soon-Young;Ahn, Kwang-Sung;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2008
  • Recent studies on nuclear transfer and induced pluripotent stem cells have demonstrated that differentiated somatic cells can be returned to the undifferentiated state by reversing their developmental process. These epigenetically reprogrammed somatic cells may again be differentiated into various cell types, and used for cell replacement therapies through autologous transplantation to treat many degenerative diseases. To date, however, reprogramming of somatic cells into undifferentiated cells has been extremely inefficient. Hence, reliable markers to identify the event of reprogramming would assist effective selection of reprogrammed cells. In this study, a transgene construct encoding enhanced green fluorescent protein (EGFP) under the regulation of human Oct4 promoter was developed as a reporter for the reprogramming of somatic cells. Microinjection of the transgene construct into pronuclei of fertilized mouse eggs resulted in the emission of green fluorescence, suggesting that the undifferentiated cytoplasmic environment provided by fertilized eggs induces the expression of EGFP. Next, the transgene construct was introduced into human embryonic fibroblasts, and the nuclei from these cells were transferred into enucleated porcine oocytes. Along with their in vitro development, nuclear transfer embryos emitted green fluorescence, suggesting the reprogramming of donor nuclei in nuclear transfer embryos. The results of the present study demonstrate that expression of the transgene under the regulation of human Oct4 promoter coincides with epigenetic reprogramming, and may be used as a convenient marker that non-invasively reflects reprogramming of somatic cells.

Cancer-Specific Induction of Adenoviral E1A Expression by Group I Intron-Based Trans-Splicing Ribozyme

  • Won, You-Sub;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.431-435
    • /
    • 2012
  • In this study, we describe a novel approach to achieve replicative selectivity of conditionally replicative adenovirus that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs. We developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce adenoviral E1A gene expression selectively in cancer cells that express the RNA. Western blot analysis showed that the ribozyme highly selectively triggered E1A expression in hTERT-expressing cancer cells. RT-PCR and sequencing analysis indicated that the ribozyme-mediated E1A induction was caused via a high fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. Moreover, reporter activity under the control of an E1A-dependent E3 promoter was highly transactivated in hTERT-expressing cancer cells. Therefore, adenovirus containing the hTERT RNA-targeting trans-splicing ribozyme would be a promising anticancer agent through selective replication in cancer cells and thus specific destruction of the infected cells.