• Title/Summary/Keyword: promoter methylation

Search Result 192, Processing Time 0.016 seconds

Analysis of 5-aza-2'-deoxycytidine-induced Gene Expression in Lung Cancer Cell Lines (폐암 세포주에서 5-aza-2'-deoxycytidine 처치에 의해 발현되는 암항원 유전자 분석)

  • 김창수;이해영;김종인;장희경;박종욱;조성래
    • Journal of Chest Surgery
    • /
    • v.37 no.12
    • /
    • pp.967-977
    • /
    • 2004
  • Background: DNA methylation is one of the important gene expression mechanisms of the cell. When cytosine of CpG dinucleotide in promotor is hypomethylated, expression of some genes that is controlled by this promoter is altered. In this study, the author investigated the effect of DNA demethylating agent, 5-aza-2'-deoxycytidine (ADC), on the expressions of cancer antigen genes, MHC and B7 in 4 lung cancer cell lines, NCIH1703, NCIH522, MRC-5, and A549. Material and Method: After treatment of cell lines, NCIH1703, NCIH522, MRC-5 and A549 with ADC (1 uM) for 48 hours, RT-PCR was performed by using the primers of MAGE, GAGE, NY-ESO-1, PSMA, CEA, and SCC antigen gene. In order to find the optimal ADC treatment condition for induction of cancer antigen, we studied the effect of ADC treatment time and dose on the cancer antigen gene expression. To know the effect of ADC on the expression of MHC or B7 and cell growth, cells were treated with 1 uM of ADC for 72 hours for FACS analysis or cells were treated with 0.2, 1 or 5 uM of ADC for 96 hours for cell counting. Result: After treatment of ADC (1 uM) for 48 hours, the expressions of MAGE, GAGE, NY-ESO-1, and PSMA genes increased in some cell lines. Among 6 MAGE isotypes tested, and gene expression of MAGE-1, -2, -3, -4 and -6 could be induced by ADC treatment. However, CEA gene expression did not change and SCC gene expression was decreased by ADC treatment. Gene expression was generally induced 24 - 28 hours after ADC treatment and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC ADC teatment, and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC teatment in ADC-Free medium. Most gene expression could be induced at 0.2 uM of ADC, but gene expression increased dependently on ADC treatment dose. The expression of MHC and B7 was not increased by ADC treatment in all four cell lines, and the growth rate of 4 cell lines decreased significantly with the increase of ADC concentrations. Conclusion: Treatment of lung cancer cell lines with ADC increases the gene expression MAGE, GAGE and NY-ESO-1 that are capable of induction of cytotoxic T lymphocyte response. We suggest that treatment with 1 uM of ADC for 48 hours and then culturing in ADC-free medium is optimal condition for induction of cancer antigen. However, ADC has no effect on MHC and B7 induction, additional modification for increase of expression of MHC, B7 and cytokine will be needed for production of efficient cancer cell vaccine.

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.