• Title/Summary/Keyword: prokaryotic selectivity

Search Result 3, Processing Time 0.015 seconds

Design of Short Indolicidin Analogs with Enhanced Prokaryotic Selectivity (증가된 원핵세포선택성을 가진 짧은 인돌리시딘 유사체의 설계)

  • Shin, Song Yub
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.409-413
    • /
    • 2012
  • Indolicidin (ID) is a 13-residue Trp-rich antimicrobial peptide (AMP) isolated from bovine neutrophils. In addition to having a high antimicrobial potency, it is also toxic to mammalian cells. To develop novel ID-derived AMPs with shorter lengths and enhanced prokaryotic selectivities (meaning potent antimicrobial activity against bacterial cells without toxicity against mammalian cells) over the parental ID, several ID analogs were designed and synthesized. Finally, 10-residue ID analogs (SI, SI-PA, SI-WF and SI-WL) with much higher prokaryotic selectivity than the parental ID were developed. Our results suggest that the hydrophobic and aromatic amino acids at the central position of the analog SI with the highest prokaryotic selectivity are important for potent antimicrobial activity, but two Pro residues do not affect antimicrobial activity. The order of prokaryotic selectivity for ID and its designed analogs was SI > SI-PA > SI-WF > SI-WL > ID > SI-WA. Taken together, our designed short ID analogs could be developed as therapeutic agents for treating bacterial infections.

Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

  • Nan, Yong-Hai;Lee, Bong-Ju;Shin, Song-Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2883-2889
    • /
    • 2012
  • LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric antimicrobial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and ${\alpha}$-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.