• Title/Summary/Keyword: progressive modeling

Search Result 100, Processing Time 0.026 seconds

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

Image based Relighting Using HDRI Enviroment Map & Progressive refinement radiosity on GPU (HDRI 환경맵과 GPU 기반 점진적 세분 래디오시티를 이용한 영상기반 재조명)

  • Kim, Jun-Hwan;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2007
  • Although radiosity can represent diffuse reflections of the object surfaces by modeling energy exchange in 3D space, there are some restrictions for real-time applications because of its computation loads. Therefore, GPU(Graphics Processing Unit) based radiosity algorithms have been presented actively to improve its rendering performance. We implement the progressive refinement radiosity on GPU by G. Coombe in 3D scene that is constructed with HDR(High Dynamic Range) radiance map. This radiosity method can generate a photo-realistic rendering image in 3D space, where the synthetic objects were illuminated by the environmental light sources. In the simulation results, the rendering performance is analyzed according to the resolution of the texel in the environmental map and mipmaping. In addition, we compare the rendering results by our method with those by the incremental radiosity.

  • PDF

Text Network Analysis on Stalking-Related News Articles (스토킹 관련 언론기사에 대한 텍스트네트워크분석)

  • Eun-Sun Ji;Sang-Hee Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.579-585
    • /
    • 2023
  • The purpose of this study is to explore keywords within stalking-related news articles according to political orientation through the text network analysis, and then to examine the implicit intentions. Selecting total 1,607 articles including 824 articles of the conservative press(The Chosun Ilbo, The Joongang Ilbo) and 783 articles of the progressive press(The Hankyoreh, The Kyunghyang Shinmun) reported from January 1, 2018 to December 31, 2022, this study explored the aspect of topic category drawn through the topic modeling technique based on LDA(Latent Dirichlet Allocation). In the results of this study, the common topics of the conservative and progressive press were improvement of the perception of gender-based violence, personal protection & intensity of punishment, and disclosure of stalkers' personal information. Regarding the topics differently shown in those two press, the conservative press showed stalkers' harmful act, and outline of 'murder case at Sindang Station' while the progressive press showed request for aggravated punishment on the 'murder case at Sindang Station', and eradication of sexual exploitation crime (in cyber space). The results of this study imply that there are changes in the type of reporting according to ideological opinions about stalking in news articles.

Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling (응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석)

  • Woo, Kyeongsik;Cairns, Douglas S.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • In this paper, fracture behavior of laminated composites with notch was studied by cohesive zone modeling approach. The numerical modeling proceeded by first generating 3 dimensional solid element meshes for notched laminated composite coupon configurations. Then cohesive elements representing failure modes of fiber fracture, matrix cracking and delamination were inserted between bulk elements in all regions where the corresponding failures were likely to occur. Next, progressive failure analyses were performed simulating uniaxial tensile tests. The numerical results were compared to those by experiment available in the literature for verification of the analysis approach. Finally, notched laminated composite configurations with selected stacking sequences were analyzed and the failure behavior was carefully examined focusing on the failure initiation and progression and the dominating failure modes.

A Micromechanics-based Elastic Model for Particle-Reinforced Composites Containing Slightly Weakened Interfaces (미소한 손상경계면을 갖는 입자강화 복합재료의 미세역학 탄성 모델에 관한 연구)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.441-444
    • /
    • 2007
  • This paper presents a part of micormechanics-based elastic modeling (Lee and Pyo, 2007) of particle-reinforced composites containing slightly weakened interfaces. The Eshelby's tensor for a damaged ellipsoidal inclusion to model particles with slightly weakened interfaces is incorporated into a micormechanical formulation by Ju and Chen (1994). A damage model in accordance with the Weibull's probabilistic function is also developed to simulate the progression of weakened interface in the composites.

  • PDF

Modeling Stress-Strain Relations for FRP-Confined Concrete (FRP로 구속된 콘크리트의 응력-변형률 해석모델)

  • Cho, Soon-Ho;Bang, Se-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • The analytical model capable of predicting stress vs. strain relations for circular FRP-confined concrete in a rational manner is proposed. The underlying idea is that the volumetric expansion due to progressive microcracking is an important measure of the extent of damage in the material microstructure. Various existing analytical models including the proposed were also investigated, and compared each other and with test results.

  • PDF

FIRE DISASTER SIMULATION BASED ON PARTICLE SYSTEM

  • Shin, Zen-Chung;Chen, Yean-Liang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.195-200
    • /
    • 1999
  • In computer graphics, the modeling and simulation of flames is a challenging problem. In this paper, we propose an approach for the simulation of a fire disaster. We use particle systems to describe the dynamic behavior fire. The illumination of dynamic flame is rendered by progressive radiosity algorithm.

A Study on the 3-D Geometric Modeler for Safety Assessment of Damaged Ships (손상선박의 안전성평가를 위한 3차원 형상 모델러에 관한 연구)

  • 이동곤;이순섭;박범진
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.30-36
    • /
    • 2003
  • To improve survivability of damaged ship, assessment of stability and structural safety, and behavior analysis in wave is required. Prediction of sinking time, damage stability and structural strength considering progressive flooding and dynamic force in wave is very important. To do it, a geometric model which can be express damaged ship is prepared. This paper described the geometric modeler for survivability assessment of damaged ship. The modeler is developed based on 3-D geometric modeling kernel, ACIS. The hull form and compartment definition is available fundamentally. And requirement for modeler contains data generation and interface for hydrostatic calculation, behavior analysis, and longitudinal strength analysis and so on. To easy access modeling system by conventional user such as crew, user interface is developing.

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide;Mitelman, Amichai
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2021
  • The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.