• Title/Summary/Keyword: progressive fracture mode

Search Result 13, Processing Time 0.025 seconds

Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading (모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측)

  • Kang, Seunggu;Shin, Kwangbok;Lee, HyunSoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.930-932
    • /
    • 2017
  • In this paper, prediction of progressive interlaminar fracture in curved composite laminates under mode I loading was described. The prediction of progressive interlaminar fracture in curved composite laminates was conducted using cohesive zone model(CZM) in ABAQUS V6.13. Interlaminar fracture toughness used as input parameters in CZM was obtained through mode I, mode II and mixed mode I/II tests. The behaviors of progressive interlaminar fracture for curved composite laminates showed a good agreement between experimental and numerical results.

  • PDF

Progressive fracture analysis of concrete using finite elements with embedded displacement discontinuity

  • Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Koo, Ja-Choon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.591-604
    • /
    • 2001
  • In this paper, a finite element with embedded displacement discontinuity which eliminates the need for remeshing of elements in the discrete crack approach is applied for the progressive fracture analysis of concrete structures. A finite element formulation is implemented with the extension of the principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a discontinuous displacement shape function into the finite element formulation, the displacement discontinuity is obtained within an element. By applying either a nonlinear or an idealized linear softening curve representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is simulated by adopting the unloading path in the softening curve. Several examples demonstrate the capability of the analytical technique for the progressive fracture analysis of concrete structures.

Non-Linear Fracture Analysis of Concrete Composite (콘크리트 복합체의비선형 파괴해석)

  • 김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.187-196
    • /
    • 1997
  • 시멘트를 기초로하는 복합재료의 파괴거동은 주균열이 진행하기 이전에 파괴진행영역이라고 하는 미세균열대가 콘크리트 내부에 형성고기 때문에 선형파괴역하게 입각하여 해석하게 되면 실험치와 상당한 차이를 나타낸다. 이러한 문제점을 해결하기 위해 가상균열모델이나 균열띠 모델, 두 파라메터 파괴모델 등 비선형해석에 따른 여러 파괴역학모델들이 제안되었으나 이들 모델들은 2차원 해석에 근거를 두고 있기 때문에 구조체의 두께 방향으로 동일한 균열이 형성되며, 특히 콘크리트 실험에서 관찰되는 비연속적 균열발생에 대해서 설며이 어려웠다. 이에 본 연구는 콘크리트를하나의 다종복합체로 가정하고 연립변형모드 및 진행파괴모드 방향으로 구성재료를 배열한 상태에서 가상균열 이론에 근거한 비선형해석방법으로 모델링하였다. 진행파괴모드로 구성재료를 배열하면 강성이 높은 구성재료를 통과하여 균열이 진행될 때 균열선단으로부터 분포된 응력이 상층의 허용인장강도를 초과하게 되어 균열이 발생되며 이러한 균열은점진적인 균열진행과는 달리 비연속 동시 발생 균열ㄹ로 나타났다. 본 연구는 진행파괴모드에서의 파괴 해석 방법과연립변형모드에서의 해석 방법을 제시하였으며, 해석결과를 실험결과와 비교함으로써 검증하였다.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

A Finite Element Method for Localized Failure Analysis of Concrete (콘크리트에서 국소화된 파괴해석을 위한 유한요소법)

  • 송하원;김형운;우승민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.

Fracture Behavior of a Stacked Concrete Structure Based on the Fracture Mechanics (적층한 콘크리트 복합구조체의 파괴역학적 거동)

  • Kim, Sang-Chul;Kim, Yeon-Tae
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • The objective of this study is to simulate the fracture behavior of composite structure bonded with more than 2 different cementitious materials. For this, concrete and cement were stacked and bonded in a direction perpendicular to loading and specimens were tested. Each constituent material of concrete and cement was fabricated independently also, and three point bending and indirect tensile tests were carried out for the acquisition of measured values applicable to the proposed model. As a result of comparing theoretical results and experimental ones, it was found that the proposed model derived from fictitious crack theory can be used to predict the fracture behavior of composite structures on the vases of well agreement with experimental results. It was also noted that the degree of improvement of fracture energies and strengths is greatly dependent on the stacking sequence of layers composing of a composite structure. Thus, it can be concluded that brittleness or ductility of a composite structure can be accomplished by a proper arrangement of layers on one's purpose throughout the proposed analysis.

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF