• 제목/요약/키워드: progenitor cell

Search Result 184, Processing Time 0.023 seconds

Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells

  • Liu, Jun;Xu, Chun-Yan;Cai, Shi-Zhong;Zhou, Yue;Li, Jing;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6549-6556
    • /
    • 2013
  • Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression and relapse, and thus represent a critical target for therapeutic intervention. Hence, it is extremely urgent to explore new therapeutic strategies directly targeting LSCs for acute myelogenous leukemia (AML) therapy. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), effectively inhibited human AML $CD34^+CD38^-$ cell proliferation in vitro culture in a dose-dependent manner while sparing normal hematopoietic stem and progenitor cells at physiologically achievable concentrations. Furthermore, ASP exerted cytotoxic effects on AML K562 cells, especially LSC-enriched $CD34^+CD38^-$ cells. Colony formation assays further showed that ASP significantly suppressed the formation of colonies derived from AML $CD34^+CD38^-$ cells but not those from normal $CD34^+CD38^-$ cells. Examination of the underlying mechanisms revealed that ASP induced $CD34^+CD38^-$ cell senescence, which was strongly associated with a series of characteristic events, including up-regulation of p53, p16, p21, and Rb genes and changes of related cell cycle regulation proteins P16, P21, cyclin E and CDK4, telomere end attrition as well as repression of telomerase activity. On the basis of these findings, we propose that ASP represents a potentially important agent for leukemia stem cell-targeted therapy.

Antiretroviral Effects of 2',3'-Dideoxycytidine and Recombinant $Interferon-{\alpha}-A$ on the Infection of Anemia-inducing Murine Friend Virus (Anemia-inducing Murine Friend Virus 감염에 대한 2',3'-dideoxycytidine 및 $Interferon-{\alpha}-A$의 항retrovirus효과)

  • Ann, Hyung-Soo;Ahn, Ryoung-Me;Kim, Dong-Seop
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.365-375
    • /
    • 1995
  • The anemia-inducing strain of Friend virus (FVA) is a murine retrovirus which stimulates the proliferation of erythroid progenitor cells. The progenitor cells synthesized by FVA-stimulation are unable to proceed with differentiation and accumulate in the spleen resulting in splenomegaly in infected mice. Using FVA-inoculated mice as a model, we have investigated the antiretroviral effects of 2',3'-dideoxycytidine (ddC) and recombinant $interferon-{\alpha}-A\;(rIFN-{\alpha}-A)$ on FVA infection. The extent of the infection was determined by measuring the weights of the spleens. Daily intraperitoneal injection of ddC (100 mg/kg body weight), $rIFN-{\alpha}-A$ (10 KU/mose) and the combination of both drugs to FVA inoculated mice for 18 days resulted in suppression of the growth of spleens by 15.1%, 52.7% and 61.6%, respectively. When ddC was dissolved in drinking water (0.1 mg/ml) and administered to a group of FVA inoculated mice ad libitum, and $rIFN-{\alpha}-A$ (10 KU/mouse) was intraperitoneally injected daily to another group of ddC (0.1 mg/ml) drinking mice for 18days, the growth of spleens was suppressed by 38.4% and 83.2%, respectively. These results indicate that administration of ddC via drinking water is more effective in suppressing FVA infection than the daily injection of ddC, and that the combined effects ddC and $rIFN-{\alpha}-A$ are not synergistic but additive. In order to determine whether ddC treatment alters the characteristic of the progenitor cells with respect to $Ca^{++}$ uptake, $Ca^{++}$ uptake in erythroid cells and the effect of cyclohexyladenosine (CHA) on the $Ca^{++}$ uptake were studied. $Ca^{++}$ uptake in the erythroid progenitor cells was about 20-fold greater than in mouse erythrocytes and the inhibition of $Ca^{++}$ uptake by CHA was the greatest in the progenitor cells from FVA infected mice which were treated with ddC. The inhibition was obviated by theophylline. Results of CHA binding studies showed that the erythroid progenitor cells contain both high and low affinity CHA binding sites, whereas mose erythrocytes contain only the low affinity CHA binding sites.

  • PDF

Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development

  • Lee, Hankyu;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.367-372
    • /
    • 2020
  • Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.

PROLIFERATION OF ENDOTHELIAL PROGENITOR CELLS BY OSTEOGENIC DIFFERENTIATION OF PERIOSTEAL-DERIVED CELLS (골막기원세포의 조골세포 분화과정에서 나타나는 혈관내피전구세포의 증식)

  • Kim, Jong-Ryoul;Song, Jung-Ho;Kim, Uk-Kyu;Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Kim, Deok Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Byun, June-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • Purpose : The purpose of this study was to examine the expression of various angiogenic factors during osteoblastic differentiation of periostealderived cells and the effects of osteogenic inductive medium of periosteal-derived cells on the proliferation of endothelial progenitor cells. Materials and methods : Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were divided into two groups and cultured for 21 days. In one group, the cells were cultured in the DMEM supplemented with osteogenic inductive agent, including 50g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate. In the other group, they were cultured in DMEM supplemented without osteogenic inductive agent. VEGF isoforms, VEGFR-1, VEGFR-2, and neuropilin-1 mRNA expression was observed. Human umbilical cord blood-derived endothelial progenitor cell proliferation was also observed. Results : The expression of VEGF isoforms was higher in osteogenic inductive medium than in non-osteogenic inductive medium. The expression of VEGFR-2 was also higher in osteogenic inductive medium than in non-osteogenic inductive medium. However, the expression of VEGFR-1 and neuropilin-1 was similar in both osteogenic inductive medium and non-osteogenic inductive medium. In addition, conditioned medium from differentiated periosteal-derived cells stimulated human umbilical cord blood-derived endothelial progenitor cell numbers compared to conditioned medium from non-differentiated periosteal-derived cells. Conclusion : These results suggest that in vitro osteoblastic differentiation of periosteal-derived cells has angiogenic capacity to support endothelial progenitor cell numbers.

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

Effects of Tubulyzines, Novel Microtubule-Binding Triazine Molecules, on Endothelial Progenitor Cell Differentiation

  • Park, Hyo-Eun;Lee, Soo-Young;Ahn, Hyun-Young;Shin, Jong-Cheol;Chang, Young-Tae;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.85-90
    • /
    • 2003
  • Microtubule-binding molecules have been developed as anti-cancer agents to overcome the toxicities of current chemotherapeutics and also have potential for use as anti-angiogenic agents. In this work, we examined the effect of novel triazine compounds, Tubulyzines (microTUBUle LYsing triaZINE), derived from the orthogonal synthesis of a triazine library, on endothelial progenitor cell differentiation. When mononuclear cells isolated from human cord blood were cultured on fibronectin-coated plates for 7 days, all the Tubulyzine compounds A, B, and C (TA, TB, and TC) tested decreased the number of adherent cells in a dose-dependent manner in a coo. centration ranges of 2-5 to $80\mu\textrm{M}$. TA ($IC_{50}$=$20\mu\textrm{M}$) showed slightly more potent activity than TB and TC. Adherent cells treated with TA also exhibited a lower level of ability to ac-LDL uptake, with low ratios of positive cells out of total adherent cells, in a dose-dependent manner and weak expression of endothelial lineage markers, KDR, CD31, and vWF at $20\mu\textrm{M}$. Therefore, these results suggest that tubulyzine A (TA) can be effectively used for the inhibition of new vessel growth by inhibiting differentiation of endothelial progenitor cells.

Colony Forming Unit(CFU) Assay를 이용한 재조합 단백질 Leukotactin-1(Lkn-1)의 Myelosuppression 및 Myeloprotection 연구

  • Lee, Gyu-Hwa;Lee, Gong-Ju;Lee, Eun-Gyeong;Im, In-Hwan;Jeon, Eun-Yeong;Choe, Mu-Rim;Kim, Dong-Il;Park, Du-Hong;Yun, Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.775-778
    • /
    • 2001
  • Chemokines are small chemotalic cytokines that have a number of biological functions. Some chemokines regulate the proliferation of hematopoietic stem and progenitor cells(HSPC). Leukotactin-l(Lkn-l) is a CC chemokine and is known to reduce colony forming unit(CFU). The N-terminal truncated Leukotactin-l(rtLkn-l), produced by Pichia pastoris, suppressed CFU from 40 to 60%. The rtLkn-l protected CFU from cytotoxic effect of anticancer drug such as Ara-C, doxorubicin, cyclophosphamide and 5-FU by cell cycle arrest.

  • PDF

Hematopoiesis Activity of Sambucus javanica on Chloramphenicol-induced Aplastic Anemia Mouse Model

  • Putra, Wira Eka;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Hematopoiesis has a pivotal role in the maintenance of body homeostasis. Ironically, several hematological disorder caused by chemicals, drugs, and other environmental factors lead to severe bone marrow failure. Current treatments like stem cell transplantation and immunosuppression remain ineffective to ameliorate this diseases. Therefore, a newtreatment to overcome this entity is necessary, one of them by promoting the usage of medicinal plants. Thus, this study aimed to evaluate the hematopoiesis potency of S. javanica berries and leaves extracts in chloramphenicol (CMP)-induced aplastic anemia mice model. In this present study, several types of blood progenitor cell such as $TER-119^+VLA-4^+$ erythrocytes lineage, $Gr-1^+$ granulocytes, and $B220^+$ B-cell progenitor cells were evaluated by flow cytometry analysis. Accordingly, we revealed that S. javanica berries and leaves extracts significantly promoted $TER-119^+VLA-4^+$ erythrocytes lineage and $Gr-1^+$ granulocytes after exposed by CMP. Thus, these results suggested that S. javanica berries and leaves extracts might have hematopoiesis activity in CMP-induced aplastic anemia mice model.