• Title/Summary/Keyword: profit models

Search Result 235, Processing Time 0.027 seconds

A Study on Utilizing DEA in Efficiency Evaluation of Social Welfare Agencies (자료포락분석(DEA)을 이용한 사회복지관의 효율성 평가에 관한 연구 : 부산지역 사례를 중심으로)

  • Son, Kwang-Hoon
    • Korean Journal of Social Welfare
    • /
    • v.52
    • /
    • pp.117-141
    • /
    • 2003
  • This study is to identify the efficiency in Busan social welfare agencies between input factors and output factors. For this purpose, gathered are the 2001 services reports of those study agencies. This study used 4 difference model, model 1; comparing input factor(social worker number & labor cost) about output factor(the total number of program used person), model 2; comparing input factor(the total number of social welfare agencies staff & the total working expenses) about output factor(the total number of program used person), model 3; comparing input factor(the total number of volunteer, social welfare agencies staff & a period of operation) about output factor(the total number of program used person), model 4; comparing input factor(the total number of volunteer, social welfare agencies staff, a period of operation & the total working expenses) about output factor(the total number of program used person). Charnes's study(1978) provided an analytical tool for efficiency services output of non-profit organizations, and DEA(Data Envelopment Analysis) was a analytical framework for evaluating the impact of social service outcome. the finding are as follows : (1) In the results of comparing 4 models as same standard, we can find 35-55%(16-25) efficiency agencies among the 45 social welfare agencies. (2) For all DMU becoming the efficiency 1 to standard of output factor, model 1; 33 agencies are increasing the social worker number($\Delta$0.8 number), 10 agencies are raising the labor cost of social worker($\Delta$1,189,000 Won), model 2; 30 agencies are increasing the total number of social welfare agencies staff($\Delta$1.25 number), 14 agencies are raising the total working expenses($\Delta$1,447,000 Won), model 3; 8 agencies are increasing the total number of social welfare agencies staff($\Delta$2.26 number), 14 agencies are increasing the total number of volunteer($\Delta$52 number), and 10 agencies are increasing a period of operation($\Delta$13 month), model 4; 24 agencies are increasing the total number of social welfare agencies staff($\Delta$1.8 number), 12 agencies are raising the total working expenses($\Delta$5,017,000 Won), 12 agencies are increasing the total number of volunteer($\Delta$43.2 number), and 23 agencies are increasing a period of operation($\Delta$16 month).

  • PDF

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Study on the Effect of Self-Disclosure Factor on Exposure Behavior of Social Network Service (자기노출 요인이 소셜 네트워크 서비스의 노출행동에 미치는 영향에 관한 연구)

  • Do Soon Kwon;Seong Jun Kim;Jung Eun Kim;Hye In Jeong;Ki Seok Lee
    • Information Systems Review
    • /
    • v.18 no.3
    • /
    • pp.209-233
    • /
    • 2016
  • Internet companies that utilize social network have increased in number. The introduction of diverse social media services facilitated innovative changes in e-business. Social network service (SNS), which is a domain of social media, is a web-based service designed to strengthen human relations in the Internet and build new social relations. The remarkable growth of social network services and the profit generation and perception of this service are the new growth engines of this digital age. Given this development, many global IT companies views SNS as the most powerful form of social media. Thus, they invest efforts to develop business models using SNS.2) This study verifies the impact of privacy exposure in SNS as a result of privacy invasion. This study examines the purpose of using the SNS and user's awareness of the significance of personal information, which are key factors that affect self-disclosure of personal information. This study utilizes theory of reasoned action (TRA) to provide a theoretical platform that describes the specific behavior and emotional response of individuals. This study presents a research model that considers negative attitude (negatude). In this model, self-disclosure in SNS is considered a TRA. TRA is a subjective norm, a behavioral intention, and a key variable of exposure behavior. A survey was conducted on college students at Y university in Seoul to empirically verify the research model. The students have experiences in using SNS. A total of 198 samples were collected. Path analysis was applied to analyze the relations of factors. The results of path analysis show the statistically insignificant impact of privacy invasion on negatude, subjective norm, behavioral intention, and exposure behavior. The impact of unrecognized privacy invasion was also considered insignificant. The impacts of intention to use SNS on negatude, subjective norm, behavioral intention, and exposure behavior was significant. A significant impact was also found for the significance of personal information on subjective norm, behavioral intention, and exposure behavior, whereas the impact on negatude was insignificant. The impact of subjective norm on behavioral intention was significant. Lastly, the impact of behavioral intention on exposure behavior was insignificant. These findings are significant because the study examined the process of self-disclosure by integrating psychological and social factors based on theoretical discussion.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

The Impact of the Internet Channel Introduction Depending on the Ownership of the Internet Channel (도입주체에 따른 인터넷경로의 도입효과)

  • Yoo, Weon-Sang
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2009
  • The Census Bureau of the Department of Commerce announced in May 2008 that U.S. retail e-commerce sales for 2006 reached $ 107 billion, up from $ 87 billion in 2005 - an increase of 22 percent. From 2001 to 2006, retail e-sales increased at an average annual growth rate of 25.4 percent. The explosive growth of E-Commerce has caused profound changes in marketing channel relationships and structures in many industries. Despite the great potential implications for both academicians and practitioners, there still exists a great deal of uncertainty about the impact of the Internet channel introduction on distribution channel management. The purpose of this study is to investigate how the ownership of the new Internet channel affects the existing channel members and consumers. To explore the above research questions, this study conducts well-controlled mathematical experiments to isolate the impact of the Internet channel by comparing before and after the Internet channel entry. The model consists of a monopolist manufacturer selling its product through a channel system including one independent physical store before the entry of an Internet store. The addition of the Internet store to this channel system results in a mixed channel comprised of two different types of channels. The new Internet store can be launched by the independent physical store such as Bestbuy. In this case, the physical retailer coordinates the two types of stores to maximize the joint profits from the two stores. The Internet store also can be introduced by an independent Internet retailer such as Amazon. In this case, a retail level competition occurs between the two types of stores. Although the manufacturer sells only one product, consumers view each product-outlet pair as a unique offering. Thus, the introduction of the Internet channel provides two product offerings for consumers. The channel structures analyzed in this study are illustrated in Fig.1. It is assumed that the manufacturer plays as a Stackelberg leader maximizing its own profits with the foresight of the independent retailer's optimal responses as typically assumed in previous analytical channel studies. As a Stackelberg follower, the independent physical retailer or independent Internet retailer maximizes its own profits, conditional on the manufacturer's wholesale price. The price competition between two the independent retailers is assumed to be a Bertrand Nash game. For simplicity, the marginal cost is set at zero, as typically assumed in this type of study. In order to explore the research questions above, this study develops a game theoretic model that possesses the following three key characteristics. First, the model explicitly captures the fact that an Internet channel and a physical store exist in two independent dimensions (one in physical space and the other in cyber space). This enables this model to demonstrate that the effect of adding an Internet store is different from that of adding another physical store. Second, the model reflects the fact that consumers are heterogeneous in their preferences for using a physical store and for using an Internet channel. Third, the model captures the vertical strategic interactions between an upstream manufacturer and a downstream retailer, making it possible to analyze the channel structure issues discussed in this paper. Although numerous previous models capture this vertical dimension of marketing channels, none simultaneously incorporates the three characteristics reflected in this model. The analysis results are summarized in Table 1. When the new Internet channel is introduced by the existing physical retailer and the retailer coordinates both types of stores to maximize the joint profits from the both stores, retail prices increase due to a combination of the coordination of the retail prices and the wider market coverage. The quantity sold does not significantly increase despite the wider market coverage, because the excessively high retail prices alleviate the market coverage effect to a degree. Interestingly, the coordinated total retail profits are lower than the combined retail profits of two competing independent retailers. This implies that when a physical retailer opens an Internet channel, the retailers could be better off managing the two channels separately rather than coordinating them, unless they have the foresight of the manufacturer's pricing behavior. It is also found that the introduction of an Internet channel affects the power balance of the channel. The retail competition is strong when an independent Internet store joins a channel with an independent physical retailer. This implies that each retailer in this structure has weak channel power. Due to intense retail competition, the manufacturer uses its channel power to increase its wholesale price to extract more profits from the total channel profit. However, the retailers cannot increase retail prices accordingly because of the intense retail level competition, leading to lower channel power. In this case, consumer welfare increases due to the wider market coverage and lower retail prices caused by the retail competition. The model employed for this study is not designed to capture all the characteristics of the Internet channel. The theoretical model in this study can also be applied for any stores that are not geographically constrained such as TV home shopping or catalog sales via mail. The reasons the model in this study is names as "Internet" are as follows: first, the most representative example of the stores that are not geographically constrained is the Internet. Second, catalog sales usually determine the target markets using the pre-specified mailing lists. In this aspect, the model used in this study is closer to the Internet than catalog sales. However, it would be a desirable future research direction to mathematically and theoretically distinguish the core differences among the stores that are not geographically constrained. The model is simplified by a set of assumptions to obtain mathematical traceability. First, this study assumes the price is the only strategic tool for competition. In the real world, however, various marketing variables can be used for competition. Therefore, a more realistic model can be designed if a model incorporates other various marketing variables such as service levels or operation costs. Second, this study assumes the market with one monopoly manufacturer. Therefore, the results from this study should be carefully interpreted considering this limitation. Future research could extend this limitation by introducing manufacturer level competition. Finally, some of the results are drawn from the assumption that the monopoly manufacturer is the Stackelberg leader. Although this is a standard assumption among game theoretic studies of this kind, we could gain deeper understanding and generalize our findings beyond this assumption if the model is analyzed by different game rules.

  • PDF