• Title/Summary/Keyword: production possibility frontier

Search Result 3, Processing Time 0.02 seconds

An Analysis of Technical Efficiency for Managing Off-Shore Fishery in Korea (근해어업경영을 위한 기술효율성분석)

  • Choi, Jong-Du
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This paper examines measures of technical efficiency in off-shore fishery based on a frontier production function model of the Cobb-Douglas type. Technical efficiency ranges between 57.13 and 98.62 percent. The results suggest that the highest TE in the industry is the trawl. Also, this analysis shows that Busan's Danish seine fishery has a maximum TE. Angling in Gangwon has a minimum TE. Empirical measures of technical efficiency in this study can be useful in analyzing the potential effects of policies designed to deal with the current fishery industry.

Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes

  • Kwon, Soon-Jo;Eo, Soo-Mi
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Carbon nanotubes (CNTs) stand at the frontier of nanotechnology and are destined to stimulate the next industrial revolution. Rapid increase in their production and use in the technology industry have led to concerns over the effects of CNT on human health and the environment. The prominent use of CNTs in biomedical applications also increases the possibility of human exposure, while properties such as their high aspect ratio (fiber-like shape) and large surface area raise safety concerns for human health if exposure does occur. It is crucial to develop viable alternatives to in vivo tests in order to evaluate the toxicity of engineered CNTs and develop validated experimental models capable of identifying CNTs' toxic effects and predicting their level of toxicity in the human respiratory system. Human lung epithelial cells serve as a barrier at the interface between the surrounding air and lung tissues in response to exogenous particles such as air-pollutants, including CNTs. Monolayer culture of the key individual cell types has provided abundant fundamental information on the response of these cells to external perturbations. However, such systems are limited by the absence of cell-cell interactions and their dynamic nature, which are both present in vivo. In this review, we suggested two viable alternatives to in vivo tests to evaluate the health risk of human exposure to CNTs.

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.