• Title/Summary/Keyword: production environment

Search Result 5,450, Processing Time 0.032 seconds

Analysis of Economic Effects for Organic Rice's Production Tech. Locally Distributed -With Reference to Life and Environment Agriculture (LEA)- (민간실천 벼 유기농업 기술의 경영 특성 분석 -경남 고성지역의 생명환경농업을 중심으로-)

  • Jung, Man-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • This study was carried out to present the measures for the stable organic rice production, farm income increase and consumption revitalization and so on by analyzing economic effects of the organic rice production complex and farmers by cultivation type. The farmers received prices of organic rice and Life and Environment Agriculture (LEA) were 2,965 won and 2,014 won per kilogram, respectively. Finally, the results of the productivity analysis show that LEA produces about 11% lower crop yield compared with the conventional farming. Meanwhile, the profitabilities of the organic farming per 10a were about 15% higher than the conventional farming. But, LEA per 10a was individually 23% lower then the conventional farming.

Environment-friendly and Low-Carbon Agriculture for Demand-Supply Control and Food Security of Korean Rice (쌀 수급안정과 식량안보를 위한 친환경·저탄소 농업 전환방안)

  • Yang, Seung-Koo;Park, Pyung-Sik;Son, Jang-Hwan;An, Kyu-Nam
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.1
    • /
    • pp.99-128
    • /
    • 2018
  • The cultivation area of rice as staple grains is decreasing in the domestic situation in Korea. Import volume of a duty in foreign rice is 409,000 tons for a year regardless increasing of production per unit area and decreasing of rice consumption. The total stock of rice is increasing cumulatively despite the effort for production mediation of rice. Therefore, maintenance of cultivation area and reduction of production are necessary for national foodstuffs security problems. Development of environment-friendly and low-carbon technology as alternative of global warming and aging of farm labor power is very important responsibility for descendants with creation of sustainable agriculture environment. As alternative for demand and supply stabilization of rice from all angles, first stage: extension of environment-friendly cultivation area as 17% Jeollanam-do level with maintenance of cultivation area under the present circumstances, second stage: extension of environment-friendly cultivation area as 25%, third stage: extension of environment-friendly cultivation area as 35%. From above mentioned scenario, reduction of rice production (60,000 tons), increases of production cost (59,200,000,000 Won), and reduction of income (201,500,000,000 Won) are estimated in first stage. Reduction of rice production (90,000 tons), increases of production cost (122,100,000,000 Won), and reduction of income (313,700,000,000 Won) are estimated in second stage. Reduction of rice production (380,000 tons), increases of production cost (222,000,000,000 Won), and reduction of income (464,500,000,000 Won) are estimated in third stage. From analysis results for partial tillage in transplanting cultivation complex (10ha), rice production is decreased 1.3~1.5 ton by complex. Production cost of rice is decreased and increases of income cultivation type. Gradual extension of environment-friendly agriculture and low-carbon partial tillage could be expected for environment maintenance of the territorial integrity, confidence of consumer, and high-efficiency of low-cost.

Study on a Layout Design Method for Leisure Ship Production Factories using a Heuristic Location-Allocation Algorithm

  • Lee, Dong-Kun;Jeong, Yong-Kuk;Shin, Jong-Gye
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.277-284
    • /
    • 2013
  • To ensure that the production system of a factory is efficient, the factory layout design should consider the location and material flow plans of facilities, workshops, and storage areas. Highly productive factories need to have an optimized layout planning process, and a customized design methodology of the production system is a necessity for feasible layout planning. This paper presents a method for designing a layout module's size and shape and provides a heuristic location-allocation algorithm for the modules. The method is implemented and validated using a rich internet application-based platform. The layout design method is based on the leisure ship production process; this method can be used for designing the layout of a new factory or remodeling an existing factory and its production system. In contrast to existing layout methods, the inputs required for the proposed method, such as target products, production processes, and human-resource plans, are simple. This layout design method provides a useful solution for the initial stage of factory design.

GENOTYPE (BREED) AND ENVIRONMENT INTERACTION WITH PARTICULAR REFERENCE TO CATTLE IN THE TROPICS - Review

  • Vercoe, J.E.;Frisch, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.401-409
    • /
    • 1992
  • Genotype $\times$ environment (G $\times$ E) interactions must be understood if they are to be exploited to improve animal production, particularly in production systems associated with large environmental variations. The measurement and evaluation of G $\times$ E are discussed. Examples are presented that demonstrate G $\times$ E in different breeds of beef cattle for high temperatures, internal and external parasites and changes in quantity and quality of nutrition. It is demonstrated that productivity differences between genotypes or breeds under grazing conditions arise because of differences between genotypes in the combination of production potential and resistance to environmental stresses in relation to the levels of the relevant environmental stresses that are operating at the time. The $F_1$ cross between genotypes with high production potential (e.g. European Bos Taurus breeds) and those with high resistance to environmental stress (e.g. Asian and African Bos indicus and sanga breeds) is an exceptional genotype with a unique combination of these two sets of attributes. The principles for G $\times$ E developed for beef cattle are briefly discussed in relation to dairy cattle, pigs, poultry and buffalo.

Effect of Frequency and Fixed Solid Catalyst for Radical Production in Sonocatalysis (초음파 촉매 공정에서 주파수와 고정된 고체 촉매가 라디칼 생성에 미치는 영향)

  • Cho, Eunju;Na, Seungmin;Lee, Seban;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.219-223
    • /
    • 2012
  • The fixed solid catalysts such as glass bead, steel mesh, and $TiO_2$ coated ceramic bead were used to investigate effect of radical production at different frequencies. The radical production rate at 300 kHz was faster than that at 35 kHz without solid, but the tendency was changed with the presence of glass bead. The presence of glass beads create non-continuous points between the solid and liquid phases leading to increased formation of cavitation bubbles. However, the radical production decreased when steel mesh was used at 35 kHz although the surface area of contact with liquid was same when glass bead was used. Hence the solid catalyst did not always enhance the radical production. The radical production using $TiO_2$ coated ceramic bead was dramatically increased at 35 kHz due to the breakage of $TiO_2$ coated ceramic bead. Therefore the radical productions at 300 kHz using fixed solid catalysts generally increased while at 35 kHz the results fluctuated according to the experimental conditions.

Effect of Temperatures on the Enterotoxin Production of Bacillus cereus in Cereal Grains

  • Park, Young-Bae;Kim, Jung-Beom;Jin, Yong-Guo;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.824-828
    • /
    • 2008
  • Effect of various temperatures on enterotoxin production of Bacillus cereus 4 different cereal grains (brown rice, glutinous rice, barley, and Job's tear) was studied. When B. cereus was inoculated to 4 grains, no toxin was detected within 24 hr at 20 and $25^{\circ}C$ although the population reached approximately 8-10 log CFU/g. However, enterotoxin was detected in all samples above $30^{\circ}C$. When the temperature was increased to $35^{\circ}C$, toxin production was observed in the range of 6.11 and 6.26 log CFU/g on brown rice and glutinous rice, respectively. At $40^{\circ}C$, toxin production was detected after 6 hr with the lowest bacterial population of 5.32 and 5.04 log CFU/g, whereas enterotoxin was produced in the range of 6.86 and 7.77 log CFU/g on barley and Job's tear at $40^{\circ}C$. Different types of food affected enterotoxin production of B. cereus. These results suggest that enterotoxin production was more significantly regulated in incubation temperatures than the number of B. cereus.

Research on systematization and advancement of shipbuilding production management for flexible and agile response for high value offshore platform

  • Song, Young-Joo;Woo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-192
    • /
    • 2011
  • Recently, the speed of change related with enterprise management is getting faster than ever owing to the competition among companies, technique diffusion, shortening of product lifecycle, excessive supply of market. For the example, the compliance condition (such as delivery date, product quality, etc.) from the ship owner is getting complicated and the needs for the new product such as FPSO, FSRU are coming to fore. This paradigm shift emphasize the rapid response rather than the competitive price, flexibility and agility rather than effective and optimal perspective for the domestic shipbuilding company. So, domestic shipbuilding companies have to secure agile and flexible ship production environment that could respond change of market and requirements of customers in order to continue a competitive edge in the world market. In this paper, I'm going to define a standard shipbuilding production management system by investigating the environment of domestic major shipbuilding companies. Also, I'm going to propose a unified ship production management and system for the operation of unified management through detail analysis of the activities and the data flow of ship production management. And, the system functions for the strategic approach of ship production management are investigated through the business administration tools such as performance pyramid, VDT and BSC. Lastly, the research of applying strategic KPI to the digital shipyard as virtual execution platform is conducted.

Study of Integrated Production-Distribution Planning Using Simulation and Genetic Algorithm in Supply Chain Network (공급사슬네트워크에서 시뮬레이션과 유전알고리즘을 이용한 통합생산분배계획에 대한 연구)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.