• Title/Summary/Keyword: production efficiency.

Search Result 4,722, Processing Time 0.031 seconds

Performance Analysis of an Air-Cycle Refrigeration System (공기사이클 냉동시스템의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.671-678
    • /
    • 2012
  • The objective of this study is to analyze theoretically the performance of an open air-cycle refrigeration system in which environmental concerns increase. The pressure ratio of the external compressor and efficiencies of the components that compose of the system are selected as important parameters. As the pressure ratio of the external compressor increases, the pressure ratio of the ACM compressor is determined high, the refrigerating temperature and capacity increase, the COP decreases, and the total entropy production rate increases. The effect of heat exchanger effectiveness and turbine efficiency on the performance are greater than that of the ACM compressor efficiency. Also the performance of the air-cycle refrigeration system with two heat exchangers has been enhanced like high COP and low total entropy production rate, compared to the system with one heat exchanger.

Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle

  • Juarez-Martinez, L.C.;Espinosa-Paredes, G.;Vazquez-Rodriguez, A.;Romero-Paredes, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2066-2073
    • /
    • 2021
  • The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur-Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

A Comparison of the Effects of Worker-Related Variables on Process Efficiency in a Manufacturing System Simulation

  • Lee, Dongjune;Park, Hyunjoon;Choi, Ahnryul;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Purpose: The goal of this study was to build an accurate digital factory that evaluates the performance of a factory using computer simulation. To achieve this goal, we evaluated the effect of worker-related variables on production in a simulation model using comparative analysis of two cases. Methods: The overall work process and worker-related variables were determined and used to build a simulation model. Siemens PLM Software's Plant Simulation was used to build a simulation model. Also, two simulation models were built, where the only difference was the use of the worker-related variable, and the total daily production analyzed and compared in terms of the individual process. Additionally, worker efficiency was evaluated based on worker analysis. Results: When the daily production of the two models were compared, a 0.16% error rate was observed for the model where the worker-related variables were applied and error rate was approximately 5.35% for the model where the worker-related variables were not applied. In addition, the production in the individual processes showed lower error rate in the model that included the worker-related variables than the model where the worker-related variables were not used. Also, among the total of 22 workers, only three workers satisfied the IFRS (International Financial Reporting Standards) suggested worker capacity rate (90%). Conclusions: In the daily total production and individual process production, the model that included the worker-related variables produced results that were closer to the real production values. This result indicates the importance of worker elements as input variables, in regards to building accurate simulation models. Also, as suggested in this study, the model that included the worker-related variables can be utilized to analyze in more detail actual production. The results from this study are expected to be utilized to improve the work process and worker efficiency.

Technical Efficiency in Korea: Interindustry Determinants and Dynamic Stability (기술적(技術的) 효율성(效率性)의 결정요인(決定要因)과 동태적(動態的) 변화(變化))

  • Yoo, Seong-min
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.21-46
    • /
    • 1990
  • This paper, a sequel to Yoo and Lee (1990), attempts to investigate the interindustry determinants of technical efficiency in Korea's manufacturing industries, and also to conduct an exploratory analysis on the stability of technical efficiency over time. The hypotheses set forth in this paper are most found in the existing literature on technical efficiency. They are, however, revised and shed a new light upon, whenever possible, to accommodate any Korea-specific conditions. The set of regressors used in the cross-sectional analysis are chosen and the hypotheses are posed in such a way that our result can be made comparable to those of similar studies conducted for the U.S. and Japan by Caves and Barton (1990) and Uekusa and Torii (1987), respectively. It is interesting to observe a certain degree of similarity as well as differentiation between the cross-section evidence on Korea's manufacturing industries and that on the U.S. and Japanese industries. As for the similarities, we can find positive and significant effects on technical efficiency of relative size of production and the extent of specialization in production, and negative and significant effect of the variations in capital-labor ratio within industries. The curvature influence of concentration ratio on technical efficiency is also confirmed in the Korean case. There are differences, too. We cannot find any significant effects of capital vintage, R&D and foreign competition on technical efficiency, all of which were shown to be robust determinants of technical efficiency in the U.S. case. We note, however, that the variables measuring capital vintage effect, R&D and the degree of foreign competition in Korean markets are suspected to suffer from serious measurement errors incurred in data collection and/or conversion of industrial classification system into the KSIC (Korea Standard Industrial Classification) system. Thus, we are reluctant to accept the findings on the effects of these variables as definitive conclusions on Korea's industrial organization. Another finding that interests us is that the cross-industry evidence becomes consistently strong when we use the efficiency estimates based on gross output instead of value added, which provides us with an ex post empirical criterion to choose an output measure between the two in estimating the production frontier. We also conduct exploratory analyses on the stability of the estimates of technical efficiency in Korea's manufacturing industries. Though the method of testing stability employed in this paper is never a complete one, we cannot find strong evidence that our efficiency estimates are stable over time. The outcome is both surprising and disappointing. We can also show that the instability of technical efficiency over time is partly explained by the way we constructed our measures of technical efficiency. To the extent that our efficiency estimates depend on the shape of the empirical distribution of plants in the input-output space, any movements of the production frontier over time are not reflected in the estimates, and possibilities exist of associating a higher level of technical efficiency with a downward movement of the production frontier over time, and so on. Thus, we find that efficiency measures that take into account not only the distributional changes, but also the shifts of the production frontier over time, increase the extent of stability, and are more appropriate for use in a dynamic context. The remaining portion of the instability of technical efficiency over time is not explained satisfactorily in this paper, and future research should address this question.

  • PDF

An Analysis of Economic Efficiency of Fruits and Vegetables Farms: the Case of Strawberries and Tomatoes Farms (과채 재배농가의 경영현황 및 경영효율성 분석 : 딸기·토마토를 중심으로)

  • Jung, Da-Eun;Yang, Seung-Ryong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.385-412
    • /
    • 2016
  • This paper analyzes economic efficiency of strawberries and tomatoes farms using the data envelopment analysis (DEA). We examine how production characteristics and farm size affect overall efficiency (OE), allocative efficiency (AE), and technological efficiency (TE). We also survey sample farm households from the Farm Income Investigation database of Rural Development Administration to investigate management and cultivation techniques and to analyze economic efficiency by technique. Implications for improving efficiency are suggested in the conclusion.

Current Status and Prospects of Nuclear Transplantation Technology for Production of Cloned Animals (복제동물 생산을 위한 핵이식기술의 개발 현황과 전망)

  • 이효종
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.163-176
    • /
    • 1999
  • The nuclear transplantation technique is known as the most potential and efficient method for producing large numbers of genetically identical animals from a single embryo and somatic cells. After Dolly was introduced in 1997, many scientists were amazed. A possibility came to a reality that live offspring could be produced with differentiated somatic cells from an adult animal. On the other side, many in the press and the sensationalists focused on the socially, ethically and scientifically unacceptable sides of the technology. In this article, the history, current status and prospects of the technological development of nuclear transplantation in mammals and its application to the production of cloned animals are described. For the efficient and successful production of cloned embryos by nuclear transplantation, the right selection, preactivation and micromanipulation of oocytes as capacious recipient cytoplasm, the adequate and benefitial preparation of multiple totipotent embryonic and somatic cells as donor nuclei, fusion of them and in vitro production of cloned embryos are very critical. Recently the overall efficiency of production of cloned embryos and offspring in livestock has been much improved. Cloning will also be a more efficient, faster and useful way of creating transgenic fetuses for gene therapies, gene pharming, organs for xenotransplantation by preselection and mass production of transgenic embryos and consequently improving the production efficiency in transgenic animals. Further technical development of nuclear transplantation will enable large-scale production of cloned livestock and in near future the commercial cloning of animals will become a reality.

  • PDF

Study on Bio-H2 Production from Synthetic Food Waste and Activated Sludge from Industrial Waste Water Processes using Dark-fermentation (산업공정의 폐수처리에서 발생된 폐활성슬러지 및 인공음식폐기물을 이용한 생물학적 수소생성에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Mi-Hyung;Lee, Myoung-Joo;Hwang, Sun-Jin;Eom, Hyoung-Choon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.703-712
    • /
    • 2010
  • This study performed to extract operation factors of major organic wastes, which were food wastes and waste activated sludge generated in industries in order to use them as a substrate for bio-H2 production. According to the results of experimental analysis for hydrogen production capacity by various organic concentrations, the hydrogen production yield was the highest at 80 g/L, and the efficiency was improved by the pretreatment of waste activated sludge (acid treatment, alkali treatment). Hydrogen production efficiency was improved by mixing food wastes and waste activated sludge if waste activated sludge was below than 30%, however, it was decreased when it was more than 50%. The impacts of heavy metals on the hydrogen production shows that the inhibition level depends on the concentration of Cr, Zn, and Cu, Fe was able to enhance the hydrogen production.

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

Trends in Programmable Object-Based Content Production Technologies (프로그래밍 방식의 객체 기반 영상 콘텐츠 제작 기술 동향)

  • Lee, J.Y.;Kim, T.O.;Choo, H.G.;Lee, H.K.;Seok, W.H.;Kang, J.W.;Hur, N.H.;Kim, H.M.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.70-80
    • /
    • 2022
  • With the rapid growth in media service platforms providing broadcast programs or content services, content production has become more important and competitive. As a strategy to meet the diverse needs of global consumers for a variety of content and to retain them as long-term repeat customers, global over-the-top service providers are increasing not only the number of content productions but also their production efficiency. Moreover, a considerable amount of scene composition in the flow of content production work appears to be combined with rendering technology from a game engine and converted to object-based computer programming, thereby enhancing the creativity, diversity, quality, and efficiency of content production. This study examines the latest technology trends in content production such as virtual studio technology, which has emerged as the center of content production, the use cases in various fields of artificial intelligence, and the metadata standards for content search or scene composition. This study also examines the possibility of using object-based computer programming as one of the future candidate technologies for content production.