• Title/Summary/Keyword: production data

Search Result 7,643, Processing Time 0.035 seconds

A Bayesian state-space production model for Korean chub mackerel (Scomber japonicus) stock

  • Jung, Yuri;Seo, Young Il;Hyun, Saang-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.139-152
    • /
    • 2021
  • The main purpose of this study is to fit catch-per-unit-effort (CPUE) data about Korea chub mackerel (Scomber japonicus) stock with a state-space production (SSP) model, and to provide stock assessment results. We chose a surplus production model for the chub mackerel data, namely annual yield and CPUE. Then we employed a state-space layer for a production model to consider two sources of variability arising from unmodelled factors (process error) and noise in the data (observation error). We implemented the model via script software ADMB-RE because it reduces the computational cost of high-dimensional integration and provides Markov Chain Monte Carlo sampling, which is required for Bayesian approaches. To stabilize the numerical optimization, we considered prior distributions for model parameters. Applying the SSP model to data collected from commercial fisheries from 1999 to 2017, we estimated model parameters and management references, as well as uncertainties for the estimates. We also applied various production models and showed parameter estimates and goodness of fit statistics to compare the model performance. This study presents two significant findings. First, we concluded that the stock has been overexploited in terms of harvest rate from 1999 to 2017. Second, we suggest a SSP model for the smallest goodness of fit statistics among several production models, especially for fitting CPUE data with fluctuations.

A Study on Total Production Time Prediction Using Machine Learning Techniques (머신러닝 기법을 이용한 총생산시간 예측 연구)

  • Eun-Jae Nam;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 2023
  • The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

Assessment of Energy Organizations' External Conditions in the Russian Federation: A Sector Analysis

  • Vyborova, E.N.;Salyakhova, E.A.
    • Asian Journal of Business Environment
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • Purpose - The paper analyzes basic indicators characterizing the volume of energy sector activity in the Russian Federation, Privolzhsky Federal district, Republic of Tatarstan. Research design, data, and methodology - The study analyzed data from the Privolzhsky Federal district, specifically, industrial production volume, electricity production, energy consumption, energy-balance data, capital investments, and capital investment structure. An array of data has been investigated in recent years. The dataset's dynamics were analyzed in 1998. Fixed capital investment dynamics were studied in 1946 the figures were converted to a comparable form using the index method. Trends were analyzed using multivariate statistics methods and the Statgraphics software package. Results - Hypothesis 1. There are sectoral disproportions in energy flows,taking into account the volume of electricity production and consumption. Trends in electricity production in general coincide with industrial production volume trends. Energy flows have disparities in individual territorial units, and in general. Hypothesis 2. The degree of sectoral economic stability decreases with insufficient levels of investment in fixed capital energy organizations. Conclusions - Because totalelectricity production is largely determined by fixed capital investments, the study of their trends and patterns will coordinate efforts on investment operations in this area.

Automatic Estimation of Tillers and Leaf Numbers in Rice Using Deep Learning for Object Detection

  • Hyeokjin Bak;Ho-young Ban;Sungryul Chang;Dongwon Kwon;Jae-Kyeong Baek;Jung-Il Cho ;Wan-Gyu Sang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.81-81
    • /
    • 2022
  • Recently, many studies on big data based smart farming have been conducted. Research to quantify morphological characteristics using image data from various crops in smart farming is underway. Rice is one of the most important food crops in the world. Much research has been done to predict and model rice crop yield production. The number of productive tillers per plant is one of the important agronomic traits associated with the grain yield of rice crop. However, modeling the basic growth characteristics of rice requires accurate data measurements. The existing method of measurement by humans is not only labor intensive but also prone to human error. Therefore, conversion to digital data is necessary to obtain accurate and phenotyping quickly. In this study, we present an image-based method to predict leaf number and evaluate tiller number of individual rice crop using YOLOv5 deep learning network. We performed using various network of the YOLOv5 model and compared them to determine higher prediction accuracy. We ako performed data augmentation, a method we use to complement small datasets. Based on the number of leaves and tiller actually measured in rice crop, the number of leaves predicted by the model from the image data and the existing regression equation were used to evaluate the number of tillers using the image data.

  • PDF

Development of AI-based Cognitive Production Technology for Digital Datadriven Agriculture, Livestock Farming, and Fisheries (디지털 데이터 중심의 AI기반 환경인지 생산기술 개발 방향)

  • Kim, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.54-63
    • /
    • 2021
  • Since the recent COVID-19 pandemic, countries have been strengthening trade protection for their security, and the importance of securing strategic materials, such as food, is drawing attention. In addition to the cultural aspects, the global preference for food produced in Korea is increasing because of the Korean Wave. Thus, the Korean food industry can be developed into a high-value-added export food industry. Currently, Korea has a low self-sufficiency rate for foodstuffs apart from rice. Korea also suffers from problems arising from population decline, aging, rapid climate change, and various animal and plant diseases. It is necessary to develop technologies that can overcome the production structures highly dependent on the outside world of food and foster them into export-type system industries. The global agricultural industry-related technologies are actively being modified via data accumulation, e.g., environmental data, production information, and distribution and consumption information in climate and production facilities, and by actively expanding the introduction of the latest information and communication technologies such as big data and artificial intelligence. However, long-term research and investment should precede the field of living organisms. Compared to other industries, it is necessary to overcome poor production and labor environment investment efficiency in the food industry with respect to the production cost, equipment postmanagement, development tailored to the eye level of field workers, and service models suitable for production facilities of various sizes. This paper discusses the flow of domestic and international technologies that form the core issues of the site centered on the 4th Industrial Revolution in the field of agriculture, livestock, and fisheries. It also explains the environmental awareness production technologies centered on sustainable intelligence platforms that link climate change responses, optimization of energy costs, and mass production for unmanned production, distribution, and consumption using the unstructured data obtained based on detection and growth measurement data.

A study on Mass production stage Tank Battle Management System Environmental Stress Screening test method and application improvement based on Production process data (생산 공정 자료 기반 양산단계 전차 전장관리체계 환경 부하 선별 시험 방법 및 적용 개선에 관한 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.273-288
    • /
    • 2015
  • Purpose: In this study, we apply environmental stress screening (ESS) to battle management system (BMS) of a tank and use the ESS profile based on production process data, guided by MIL-HDBK-781/344/2164. Methods: To optimize ESS Profile of the BMS of a tank, we estimate ESS model parameters (e.g., defect density, screening strength) using primary production failure reporting and corrective action system (FRACAS) data of military supply contract firm. Results: First, we collect the Primary production FRACAS data of military supply contract firm. Second, we compute curve fitting approach to find patent defect density and latent defect density using FRACAS data. Third, we solve the equation of Defect Density(patent defect density + latent defect density)($D_{IN}$) and Screening Strength(SS) Using second step data. As a result of analysis according to the order, we calculate $D_{IN}$(Temperature stress case : 74.02, Vibration stress : 10.252) and : SS(Temperature stress case : 0.4632, Vibration stress : 0.4142) and confirm the Condition II-D based on MIL-HDBK-344. According to Condition II-D, it is necessary to modify existing ESS profile through decreasing the $D_{IN}$ and increasing the SS. Conclusion: Identification of defect causes through ESS approach reduce defect densities for production. It provides feedback to a lessons-learned data base to avoid similar problems on next generation tank BMS.

A Study on analysis framework development for yield improvement in discrete manufacturing (이산 제조 공정에서의 수율 향상을 위한 분석 프레임워크의 개발에 관한 연구)

  • Song, Chi-Wook;Roh, Geum-Jong;Park, Dong-Jin
    • The Journal of Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-121
    • /
    • 2017
  • Purpose It is a major goal to improve the product yields during production operations in the manufacturing industry. Therefore, factory is trying to keep the good quality materials and proper production resources, also find the proper condition of facilities and manufacturing environment for yields improvement. Design/methodology/approach We propose the hybrid framework to analyze to dataset extracted from MES. Those data is about the alarm information generated from equipment, both measurement and equipment process value from production and cycle/pitch time measured from production data these covered products during production. We adapt a data warehousing techniques for organizing dataset, a logistic regression for finding out the significant factors, and a association analysis for drawing the rules which affect the product yields. And then we validate the framework by applying the real data generated from the discrete process in secondary cell battery manufacturing. Findings This paper deals with challenges to apply the full potential of modeling and simulation within CPPS(Cyber-Physical Production System) and Smart Factory implementation. The framework is being applied in one of the most advanced and complex industrial sectors like semiconductor, display, and automotive industry.

Design and Implementation of Integrated Production System for Large Aviation Parts (데이터 중심 통합생산시스템 설계 및 구현: 대형항공부품가공 사례)

  • Bae, Sungmoon;Bae, Hyojin;Hong, Kum Suk;Park, Chulsoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.208-219
    • /
    • 2021
  • In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.

A Basic Study on Data Estimation Model of Production-installation Using Mathematical Algorithm in Free-Form Concrete Panel (비정형 콘크리트 패널의 수학적 알고리즘을 이용한 생산-설치 데이터 생성모델 기초연구)

  • Son, Seung-Hyun;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.166-167
    • /
    • 2016
  • Unlike the past, supported by the development of digital technologies, free-form buildings are frequently designed with creative thoughts of architectural designers. However, there are some difficulties preventing successfully completion of projects, like reduced productivity and increased construction duration and cost upon the process of producing and installing concrete panels for free-form structures. In particular, there are active studies on the CNC machine for production of free-form concrete panels. Yet, it is difficult to effectively and easily come up with information on production and installation of free-form, curve-surfaced panels which are difficult to be mathematically defined. This requires a lot of manpower and time to implement the curved surfaces of free-form buildings as intended by architects. Accordingly, it needs a model that can effectively create production-installation data of free-form concrete panels for successful free-form building projects. Thus, the purpose of the study is to suggest data estimation model of production-installation using mathematical algorithm in free-form concrete panels. The study results will realize effective production and installation of free-form concrete members, allowing improved productivity of projects, reduced cost and shortened construction duration.

  • PDF