• Title/Summary/Keyword: processing system

Search Result 22,448, Processing Time 0.047 seconds

CCSDS PN PROCESSING SPEED OPTIMIZATION

  • Ahn, Sang-Il;Kim, Tae-Hoon;Koo, In-Hoi
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.537-539
    • /
    • 2007
  • Telemetry processing system requires minimum bit transition level in data streams to maintain a bit synchronization while receiving telemetry signal. PN code has a capability of providing the bit transition and is widely used in the packet communication of CCSDS. CCSDS PN code that generator polynomial is $h(x)=x^{8}+x^{7}+x^{5}+x^{3}+1$, and the random bit sequence that is generated from this polynomial is repeated with the cycle of 255 bits. As the resolution of satellite image increases, the size and transmission rate of data increases. To process of huge and bulky size of satellite image, the speed of CCSDS PN Processing is very important. This paper introduces the way of improving the CCSDS PN Processing speed through processing 128 bits at one time using the feature of cyclic structure that repeats after first 255 bytes by grouping the random bit sequence with 1 byte and Intel Streaming SIMD Extensions 2. And this paper includes the comparison data of processing speed between SSE2-applied implementation and not-applied implementation, in addition, the measured value of speed improvement.

  • PDF

Comparison study of CPU processing load by I/O processing method through use case analysis (유즈케이스를 통해 분석해 본 I/O 처리방식에 따르는 CPU처리 부하 비교연구)

  • Kim, JaeYoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.57-64
    • /
    • 2019
  • Recently, avionics systems are being developed as integrated modular architecture applying the modular integration design of the functional unit to reduce maintenance costs and increase operating performance. Additionally, a partitioning operating system based on virtualization technology was used to process various mission control functions. In virtualization technology, the CPU processing load distribution is a key consideration. Especially, the uncertainty of the I/O processing time is a risk factor in the design of reliable avionics systems. In this paper, we examine the influence of the I/O processing method by comparing and analyzing the CPU processing load by the I/O processing method through use of case analysis and applying it to the example of spatial-temporal partitioning.

Query Processing System for Multi-Dimensional Data in Sensor Networks (센서 네트워크에서 다차원 데이타를 위한 쿼리 처리 시스템)

  • Kim, Jang-Soo;Kim, Jeong-Joon;Kim, Young-Gon;Lee, Chang-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.139-144
    • /
    • 2017
  • As technologies related to sensor network are currently emerging and the use of GeoSensor is increasing along with the development of IoT technology, spatial query processing systems to efficiently process spatial sensor data are being actively studied. However, existing spatial query processing systems do not support a spatial-temporal data type and a spatial-temporal operator for processing spatial-temporal sensor data. Therefore, they are inadequate for processing spatial-temporal sensor data like GeoSensor. Accordingly, this paper developed a spatial-temporal query processing system, for efficient spatial-temporal query processing of spatial-temporal sensor data in a sensor network. Lastly, this paper verified the utility of System through a scenario, and proved that this system's performance is better than existing systems through performance assessment of performance time and memory usage.

The software configuration management system for image processing algorithm development (영상처리 알고리즘 개발을 위한 소프트웨어형상관리시스템)

  • Lee Jeong-Heon;Chae Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.1-8
    • /
    • 2005
  • The importance of software is getting high in development of the digital device (digital camcoder, digital camera, mp3 player, ....). And because the sire of software becomes larger and complicated, the necessity of software configuration management (to solves a software crisis) is increased. The general software configuration management system shows lack of the property and features of software development environment for image processing algorithm due to its wide range to be covered. Image processing algorithm development environment has properties like repetitive analysis and simulation using visual programming environment where, beside support of elementary development functions. component(or library) can be combined and tested interactively. Moreover, the method to look fast and effectively for component having similar function is required. In this paper, we present the system which supports the software configuration management method for a simulation tool and the property in the visual programming environment. And we relate our system to real simulation tool so as to check its ability as the software configuration management system for image processing algorithm development environment.

FPGA based HW/SW co-design for vision based real-time position measurement of an UAV

  • Kim, Young Sik;Kim, Jeong Ho;Han, Dong In;Lee, Mi Hyun;Park, Ji Hoon;Lee, Dae Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2016
  • Recently, in order to increase the efficiency and mission success rate of UAVs (Unmanned Aerial Vehicles), the necessity for formation flights is increased. In general, GPS (Global Positioning System) is used to obtain the relative position of leader with respect to follower in formation flight. However, it can't be utilized in environment where GPS jamming may occur or communication is impossible. Therefore, in this study, monocular vision is used for measuring relative position. General PC-based vision processing systems has larger size than embedded systems and is hard to install on small vehicles. Thus FPGA-based processing board is used to make our system small and compact. The processing system is divided into two blocks, PL(Programmable Logic) and PS(Processing system). PL is consisted of many parallel logic arrays and it can handle large amount of data fast, and it is designed in hardware-wise. PS is consisted of conventional processing unit like ARM processor in hardware-wise and sequential processing algorithm is installed on it. Consequentially HW/SW co-designed FPGA system is used for processing input images and measuring a relative 3D position of the leader, and this system showed RMSE accuracy of 0.42 cm ~ 0.51 cm.

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

Data Acquisition and Processing System for Tractors Field Performance (트랙터의 포장성능평가(圃場性能評價)를 위한 자료수집처리(資料蒐集處理) 시스템의 개발(開發))

  • Ryu, K.H.;Ryuh, Y.S.;Kang, E.;Park, B.S.;Chang, S.K.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 1985
  • This study was carried out to develop a versatile data acquisition/processing system for overall tractor performance utilizing a NEC PC-8001 microcomputer. The data acquisition system measures drawbar pull and power, wheel torque and axle power, ground speed, wheel slip, fuel flow, and engine speed. The system stores hexadecimal data for these variables in memory. Upon completion of each test run, all hexadecimal data stored in memory are recorded on floppy disc. The data processing system reads in the data collected on floppy disc and interprete them using several graphical and statistical techniques. The system uses the same microcomputer and a dot-matrix printer. The data acquisition system has been installed on a GOLDSTAR 500 tractor (2WD, 50 ps). A field study has shown that tractor performance data can be quickly and easily collected. It also appeared that the data processing system can be used to efficiently analyze the collected data. The data acquisition system has some troublesome in mounting and handling on tractor since it uses a general-purpose computer consisting of several components.

  • PDF

Detection of Knots by Image Processing Technique (화상처리기술을 이용한 옹이의 검출)

  • 김병남;이형우
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Automation of wood processing is strongly required to improve the productivity and quality of wood products in wood industry which is one of the most labor-intensive industries. Classification of surface defects on wood boards such as knots is one of the important steps towards a completely automated wood processing system. In this study the possibility of detection of knots by image processing technique was investigated. Algorithm for the automatic determination of threshold value was developed to enhance the flexibility of image processing system. Two different approaches, grid method and tile method, were developed to enhance the speed in extracting features from images. Grid method showed slightly higher processing speed and tile method proved much more stable in determining threshold values. Tile size of $5{\times}5$ pixels or $6{\times}6$ pixels was found to be proper to get stable results with resonable processing time.

  • PDF

Development of a Process for Clean-Washed Rice Processing (I) - Mass Balance Analysis - (씻지 않은 쌀의 가공 공정 개발 (I) - 질량수지 분석 -)

  • 장동일;한우석;김동철;이상효
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 1999
  • This study was conducted to decide several design criterion for clean-washed rice processing system development. A Computer simulation was used to predict and analyze the mass balances and moisture changes of the process of clean-washed rice processing system. The following results were obtained from this study. 1. In order to attain the processing capacity of 1,000kg/h of the clean-washed rice processing system, that of the system was designed as 1,400kg/h which was based on the safety factor of 40% and handling capability of mass variations occurred during processing. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 2. It was analyzed that the proper time required for aqueous cleaning process should be within one minute. 3. The final moisture content of clean-washed rice was controlled being 15%(w.b.) for the sake of safe storage. 4. It was proven that the optimum drying time was three minutes for the clean-washed rice dried by a rotary dryer.

  • PDF

A Study on the Simplex and Distributed Multiplex type System for the Radar Data Processing (레이다 정보처리를 위한 단일형 및 분산다중형 시스템에 관한 연구)

  • 김춘길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1785-1796
    • /
    • 1993
  • Thanks to the data processing facilities of modern digital computers, the performances of radar has been promoted greatly as one of the main components of command and control systems along with the computer communications. In this study, radar data integrating and processing systems were designed for the data processing of various information from many kinds of radar in a single data processing system. The performance of the data integrating system was analyzed by applying queueing theory. A radar data integrating network was designed for synchronous relational operations among the information processing systems and the transmission characteristics were also analysed by specific models for each system. The designed data integrating systems can be divided into a simplex type and a distributed multiplex type.

  • PDF