• Title/Summary/Keyword: processing demand

Search Result 1,146, Processing Time 0.027 seconds

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Appraisal of Concrete Performance and Plan for Stable Use of EAF Oxidizing Slag as Fine Aggregate of Concrete (전기로 산화슬래그 잔골재를 사용한 콘크리트의 성능 평가)

  • Cho, Bong-Suk;Lee, Hoon-Ha;Yang, Seung-Kyu;Lee, Woong-Jong;Um, Tai-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2009
  • Recently, more focus is shift to imbalances in aggregate market supply and demand and an exhaustion of natural resources. In this situation, Electric arc furnace oxidizing slag (EAF slag) has high application possibility as aggregate for concrete due to similar property with general aggregate. However, it is inherent the problem which causes pop-out by free-CaO contained in slag In this study, we've got the plan to assure the chemical stability of EAF slag, and then experimentally tested the mechanical performance and durability for the fine aggregate used EAF slag. On this test result, we suggest the application plan. At the result of this study, it shows that EAF slag would reduce the surface defect such as pop-out due to natural aging for the fixed hour and adjustment the grain size of EAF slag. And mechanical performance and durability according to the replacement rate of concrete service, were revealed more than equal or equal compare to general aggregate. Hereafter, quality control must precede not to impede the beauty of concrete surface as assure the safety for aging and processing. And, to establish the environmental resource recycling system for by-products of steel, it should be made development of various application and guideline of quality control for the EAF slag aggregate. Moreover, it must be constantly studied all kind of engineering performance and durability for related to this study.

Estimation of Nutrient Contribution of Perennial Ground Covers in Organic Orchards and Growth Characteristics (유기과수원에 자생하는 여러해살이 초종 특성과 양분공급 추정)

  • Lim, Kyeong-Ho;Choi, Hyun-Sug;Song, Jang-Hoon;Cho, Young-Sik;Cho, Kwang-Sik;Ma, Kyeong-Bok;Won, Kyeong-Ho;Jung, Seok-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.286-293
    • /
    • 2012
  • This study was initiated to find out the suitable perennial ground covers naturally grown in thirteen organic orchards in Chonnam Province as a organic nutrient source for maintaining annual fruit tree growth. The ground covers were observed in April, June, and August in the orchards. Agropyron tsukusinense and Panicum virgatum observed in April and June, respectively, produced the highest dry weight, which increased amounts of N, $P_2O_5$, and $K_2O$, mineralizing from the residue in the ground covers. The occurrence of perennial ground covers in August decreased compared to April and June. Amount of residue in mowed Agropyron tsukusinense and Panicum virgatum satisfied nutrient demand (N; 20 kg/10a, $P_2O_5$; 11 kg/10a, and $K_2O$; 19 kg/10a) to achieve the annual growth of twenty-year old fruit tree.

Variation of Nutrients due to Long-Term Effects of Ocean Dumping and Spatial Variability of Water Quality Parameters in Summer at the Ocean Waste Disposal Site Off the West Coast of Korea (한국 서해 폐기물 투기해역의 하계 수질인자 분포특성과 장기 투기행위로 인한 영양염 농도 변화)

  • Koh, Hyuk Joon;Choi, Young Chan;Park, Sung Eun;Cha, Hyung Kee;Chang, Dae Soo;Yoon, Han Sam;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1389-1402
    • /
    • 2013
  • This paper focuses on the impacts of waste dumping on inorganic nutrients in the dumping area of the Yellow Sea, and the effect of an governmental regulation of pollution in dumping areas. The environmental variables and parameters of the dumping and reference areas in the Yellow Sea were measured during July 2009 and analyzed. In addition, the analyzed data for inorganic nutrients over the last 10 years were obtained from the Korea Coast Guard (KCG) and the National Fisheries Research and Development Institute (NFRDI). The chemical environment of the study area revealed increases in concentrations of inorganic nutrients, Chemical Oxygen Demand (COD), and Volatile Suspended Solids (VSS) in the bottom layer. On the contrary, the pH level was decreased. Most notably, the time series data of inorganic nutrients showed gradual increase over time in the dumping area, and thus, the oligotrophic waters trend toward eutrophic waters. The increases appears to be due to the disposal of large amounts of organic waste. In recent times, the wastes disposed at the area were largely comprised of livestock wastewater, and food processing waste water. The liquefied waste, which contains an abundance of nutrients, causes a sharp increase in concentrations of inorganic nitrogen in the dumping area. On the one hand, the dumping sites have been deteriorated to such an extent that pollution has become a social problem. Consequentially, the government had a regulatory policy for improvement of marine environmental since 2007 in the dumping area. Hence, the quality of marine water in the dumping site has improved.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Development of a Close-range Real-time Aerial Monitoring System based on a Low Altitude Unmanned Air Vehicle (저고도 무인 항공기 기반의 근접 실시간 공중 모니터링 시스템 구축)

  • Choi, Kyoung-Ah;Lee, Ji-Hun;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.21-31
    • /
    • 2011
  • As large scaled natural or man-made disasters being increased, the demand for rapid responses for such emergent situations also has been ever-increasing. These responses need to acquire spatial information of each individual site rapidly for more effective management of the situations. Therefore, we are developing a close-range real-time aerial monitoring system based on a low altitude unmanned helicopter. This system can acquire airborne sensory data in real-time and generate rapidly geospatial information. The system consists of two main parts: aerial and ground parts. The aerial part includes an aerial platform equipped with multi-sensor(cameras, a laser scanner, a GPS receiver, an IMU) and sensor supporting modules. The ground part includes a ground vehicle, a receiving system to receive sensory data in real-time and a processing system to generate the geospatial information rapidly. Development and testing of the individual modules and subsystems have been almost completed. Integration of the modules and subsystems is now in progress. In this paper, we w ill introduce our system, explain intermediate results, and discuss expected outcome.

The Research and Extension System with Agro-Food industry Development: To Strengthen The Regional R&D and On-Farm Bases Extension (농식품산업의 변화와 연구·지도사업의 과제 -지역R&D와 현장지도의 강화를 위해-)

  • Choe, Young Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.4
    • /
    • pp.839-869
    • /
    • 2013
  • Since opening the domestic food markets after late 1980s, Korean agro-food sector has been changed a lot, including commercialization of livestock and horticulture sectors. The large-scale periodic transactions appeared in food retail market in 1990's demand further commercialization of farm sectors. It require comprehensive on-farm knowledges including production, food processing, marketing, and management for agricultural sector. As the result, The Farming Systems Research & Extension concept has been introduced in 1992 as a form of The Regional Specialization Experiment Station. The Science and Technology Committee for Agriculture, Forestry, Fisheries, and Foods are established in 2009. However, we still find gaps between on-farm knowledge demands and supply, requiring further refining of R&D systems. It also asks to differentiate applied research from basic disciplinary research, better linkages between research and extension on farm, and comprehensive knowledge transfer systems. This study recommends for proper role allocation and cooperative structures for regional research and extension institutions to reduce overlaps among them. It further asks government to support regional research and extension systems including human resource and infrastructure building, to strengthen commodity based on-farm research and extension, and to separate budget allocation for regional research and extension. Provincial administration of the county level extension offices should also be considered for better linkage between research and extension at regional level.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.

A Frequency Domain DV-to-MPEG-2 Transcoding (DV에서 MPEG-2로의 주파수 영역 변환 부호화)

  • Kim, Do-Nyeon;Yun, Beom-Sik;Choe, Yun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2001
  • Digital Video (DV) coding standards for digital video cassette recorder are based mainly on DCT and variable length coding. DV has low hardware complexity but high compressed bit rate of about 26 Mb/s. Thus, it is necessary to encode video with low complex video coding at the studios and then transcode compressed video into MPEG-2 for video-on-demand system. Because these coding methods exploit DCT, transcoding in the DCT domain can reduce computational complexity by excluding duplicated procedures. In transcoding DV into MPEC-2 intra coding, multiplying matrix by transformed data is used for 4:1:1-to-4:2:2 chroma format conversion and the conversion from 2-4-8 to 8-8 DCT mode, and therefore enables parallel processing. Variance of sub block for MPEG-2 rate control is computed completely in the DCT domain. These are verified through experiments. We estimate motion hierarchically using DCT coefficients for transcoding into MPEG-2 inter coding. First, we estimate motion of a macro block (MB) only with 4 DC values of 4 sub blocks and then estimate motion with 16-point MB using IDCT of 2$\times$2 low frequencies in each sub block, and finish estimation at a sub pixel as the fifth step. ME with overlapped search range shows better PSNR performance than ME without overlapping.

  • PDF