• Title/Summary/Keyword: process water

Search Result 9,553, Processing Time 0.038 seconds

Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process (응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향)

  • Go, Gilhyun;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

A Study on the Ozonized Water Production technology for the PR Strip Process (PR 제거공정 적용을 위한 오존 수 생성기술 연구)

  • Son Young Su;Chai Sang Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.13-19
    • /
    • 2004
  • We have been studied on the high concentration ozonized water production technology which substitute for the SPM wet cleaning solution process as the PR strip process after the photolithography process in the semiconductor and flat panel display manufacturing. In this work, we have developed the surface discharge type ozone generator which has the characteristics of the 12 [wt%] ozone concentration at the oxygen gas flow of 0.5[ℓ/min] oxygen per cell and also developed the high efficiency ozone contactor for the mixing ozone gas with deionized water. As the production test results of the ozonized water, we obtained the ozonized water concentration above 80[ppm] at the 10[wt%] ozone gas concentration, and also had a good result of the PR strip rate of 147[nm/min]. at the 70[ppm] ozonized water.

Study on the Removal of Fluorescent Whitening Agent for Paper-mill Wastewater Reuse using the Submerged Membrane Bioreactor(SMBR) with Ozone Oxidation Process (제지폐수 재이용을 위한 침지형 생물막 여과와 오존산화공정(SMBR-Ozone Oxidation Process)에 의한 형광증백제 제거에 관한 연구)

  • Choi, Jang-Seung;Shin, Dong-Hun;Ryu, Seung-Han;Lee, Jae-Hun;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, effluent water was produced through Submerged Membrane Bio-Reactor(SMBR) process, which is a simple system and decomposes organic matter contained in wastewater with biological treatment process and performs solid-liquid separation, Especially, ozone oxidation treatment process is applied to effluent water containing fluorescent whitening agent, which is a trace pollutant which is not removed by biological treatment, and influences the quality of reused water. The concentration of $COD_{Cr}$ in the SMBR was $449.3mg/{\ell}-COD_{Cr}$, and the concentration of permeate water was $100.3mg/{\ell}-COD_{Cr}$. The removal efficiency was about 70.1%. The amount of ozone required for the removal of the fluorescent whitening agent in the permeated water in SMBR was $6.67g-O_3/min$, and the amount of ozone required to remove $COD_{Mn}$ relative to the permeate water was calculated to remove $0.997mg-COD_{Mn}$ for 1mg of $O_3$.

Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate (과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구)

  • Junsoo, Ha;Daniel Sangdu, Hur;Chaieon, Im;Donghee, Jung;Youngseong, Lim;Jinkyong, Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

A Study on Flow and Mixing Caracteristics according to Hot Water Extraction (온수 추출에 따른 유동 및 혼합 특성에 관한 연구)

  • 장영근;박이동;김철주;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.53-59
    • /
    • 1995
  • In a hot water extraction process, the flow pattern of upper region in a storage tank is a major reason of mixing between hot water and cold water. In this study, the temperature distribution in a storage tank was measured to predict the flow pattern of upper region, and the degree of stratification was analysed to the variables dominating a extraction process. And also, it was found that the degree of stratification improved expecially in a low flow rate in case of using modified distributor I(DMI) as a outlet port type.

  • PDF

The Study on Prediction of Hot Water Extraction in a Thermal Energy Storage System (축열시스템의 온수이용 예측에 관한 연구)

  • Cho, W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 1998
  • In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load for demand. Lately, practical use of thermal energy storage system and attention to essential use of energy have been increased. From this point of view, especially, a study about the energy extraction process from a storage tank is necessary. So in this study, useful rate of hot water and hot water extraction efficiency was analysed respect to dynamic and geometric parameters dominating the hot water extraction process.

  • PDF

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System (한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성)

  • Jae-Lim Lim;Lee, Kyung-Hyuk;Kim, Seong-Su;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.