• 제목/요약/키워드: process water

검색결과 9,553건 처리시간 0.036초

Formation Characteristics of Disinfection By-Products using Chlorine Disinfection in Sewage Effluent (하수 염소 소독시 소독부산물 발생 특성)

  • Beck, Young-Seog;Song, Min-Hyung;Jung, Kyung-Hun;Kwon, Dong-Sik;Lee, Gi-Gong
    • Journal of Korean Society on Water Environment
    • /
    • 제20권3호
    • /
    • pp.275-280
    • /
    • 2004
  • This study was performed to investigate the disinfection efficiency and the formation characteristics of disinfection by-products(DBPs) by chlorination in the sewage effluent. The effluent was sampled from the sewage treatment plants operated in the activated sludge process and the advanced sewage process. The type of DBPs investigated were Trihalomethanes(THMs), Dichloroacetonitrile(DCAN), Chloral hydrate(CH), Dichloroacetic acid(DCAA), Trichloroacetic acid(TCAA). Major findings are as follows. First, the optimum injection concentration for chlorination in sewage effluent were found to be in the range $0.5{\sim}1.0mg\;cl_2/L$. Also, It was found that the chlorine dosage in the effluent of activated sludge process was higher than in the effluent of advanced sewage process. Second, the maximum formation concentration of THMs were $12.7{\mu}g/L$. The THMs formation reaction was finished in a short time of several seconds and chloroform was mainly formed. Also, it was found that the concentration of ammonium nitrogen is higher, the concentration of THMs is lower. Third, it was found that DCAA and TCAA were mainly formed as DBPs by disinfection.

A Study on Treatment of Livestock wastewater using Fenton Oxidation and Zeolite Adsorption Process (Fenton 산화공정과 Zeolite 흡착공정을 연계한 축산폐수처리에 관한 연구)

  • Cho, Chang-Woo;Kim, Youn-Jeong;Chung, Paul-Gene
    • Journal of Korean Society on Water Environment
    • /
    • 제21권5호
    • /
    • pp.505-510
    • /
    • 2005
  • The objective of this study was to remove non-biodegradable matters and ammonia ion in livestock wastewater using Fenton oxidation and Zeolite adsorption process. After coagulation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. Zeolite as cation adsoption process was used to remove ammonia ion in 2nd treatment water. As a result of treatment using these processes, NBDCOD removal efficiency was over 90% and ammonia ion was almost removed. Most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater wasn't detected after Fenton oxidation process.

Performance of Backwashing Process in Biological Activated Carbon Column (생물활성탄접촉조에서 역세척 공정의 성능)

  • Lee, Gangchoon;Yoon, Taekyung;Moon, Byunghyun;Noh, ByeongIl
    • Journal of Korean Society on Water Environment
    • /
    • 제22권6호
    • /
    • pp.1082-1087
    • /
    • 2006
  • BAC backwashing process in ozone-BAC advanced water treatment process was experimentally studied. The operation and performance of backwashing were evaluated by measuring the effects of water temperature and water input rate on the backwashing interval and duration, and also the change of the amounts of biofilm and HPC in treated water before and after backwashing. The experiments were carried out with the pilot scale test module built in a existing water treatment plant, and the following results were obtained. Longer backwashing time than that of design operating condition was needed for satisfying the suitable turbidity of washing water effluent. Depending on water temperature, 7 days of backwashing cycle was recommended for the period lower than $15^{\circ}C$, and 10 days for the period higher than $15^{\circ}C$. After backwashing, the amounts of biofilm and HPC decreased to 1/10 and 80%, respectively.

Removal of cesium(137Cs) and iodide(127I) by microfiltration·nanofiltration·reverese osmosis membranes (정밀여과·나노여과·역삼투 막에 의한 세슘과 요오드의 제거)

  • Chae, Seon-Ha;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제28권5호
    • /
    • pp.549-554
    • /
    • 2014
  • This study was evaluated the applicability of the membrane filtration process (Micro Filtration (MF), nanofiltration membranes (NF), reverse osmosis (RO)) on the major radioactive substances, iodine ($I^-$) and cesium ($Cs^+$) using membranes produced in Korea and domestic raw water. Iodine ($I^-$) or cesium ($Cs^+$) in the microfiltration membrane (MF) process could not be expected removal efficiency by eliminating marginally at the combined state with colloidal and turbidity material. At the domestic raw water (lake water, turbidity 1.2 NTU, DOC 1.3 mg/L) conditions, nanofiltration membrane (NF) and reverse osmosis (RO) showed a high removal rate of about 88 ~ 99% for iodine ($I^-$) and cesium ($Cs^+$) and likely to be an alternative process for the removal of radioactive material.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

A Study on Characterization of THMs Formation in Tap Water in Daegu (대구수돗물의 THMs 생성특성)

  • Bae, Gi-Soo;Baek, Yoon-Kyung;Ryu, Ki-Sung;Shin, Sang-Hee;Lee, Chan-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제33권12호
    • /
    • pp.893-899
    • /
    • 2011
  • The occurrence of THMs, the characteristics of THMs formation and removal of THMs were investigated. The treatment train of M plant consists of prechlorination, flocculation, sedimentation, filtration, ozonation, activated carbon and postchlorination. The study of THM formation indicated that about 92% of the THMs were formed in the flocculation/sedimentation/filtration process which affected by prechlorination. The formation of THMs was highly correlated to $KMnO_4$ consumption and water temperature in raw water. The regression model had showed 0.72~0.80 of determination coefficient so it could be used to predict the amount of THMs formation in finished water. Compared to the prechlorination process, the THMs formation was reduced in interchlorination process. With the addition of PAC, fewer THMs were formed in PAC-chlorination process than in chlorination-PAC process. Our results showed that air stripping could be used to remove the existing THMs.

Application of tubular membrane to thickening process as a pre-treatment of anaerobic digester (관형막을 이용한 혐기소화조의 전처리 농축공정으로써 적용가능성 연구)

  • Kang, Hee-Seok;Park, Ki-Tae;Park, Jung-Woo;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제29권2호
    • /
    • pp.203-209
    • /
    • 2015
  • The purpose of this study is to estimate the applicability of a stable anaerobic digester using a separator membrane to the preprocessing thickening process. The results of the experiments showed about a 47.16% weight loss rate for the sludge under anaerobic condition, and about 41.17% under intermittent aeration condition. The concentrations of rejection water were $SCOD_{Cr}$ 25 mg/L, T-N 16.6 mg/L, and T-P 1.4 mg/L on the average under the intermittent aeration condition, which were lower than the concentrations of rejection water under an anaerobic condition. As for the factors affecting the reduction of the flux, correlation analyses of TTF, MLSS, $SCOD_{Cr}$, and $EPS_{Protein}$, $EPS_{Polysacchride}$ resulted in -0.97, -0.95, -0.84 and -0.86, -0.95, respectively, which showed that TTF had the highest correlation to the reduction of the flux. In addition, it was concluded that MLSS, $SCOD_{Cr}$ and $EPS_{Protein}$, $EPS_{Polysacchride}$ also have close correlations. The results are considered to show that, in the case of the process using a tubular membrane in the preprocessing process of an anaerobic digester, an intermittent aeration condition of the thickener considering the contamination of the membrane and load of rejection water is appropriate for the stable preprocessing process.

Water and Wastewater Minimization Technology Through Process Water-Reusing Optimization (공정용수 재이용 최적화를 통한 용수 및 폐수 최소화 기술)

  • Yoo, Chang-Kyoo;Lee, Tae-Yeong;Lee, In-Beum
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제28권9호
    • /
    • pp.961-976
    • /
    • 2006
  • Designing water-reuse network which can reduce the fresh water within the process and increase the water-use efficiency by scientific and systematic analysis is recently interested in the industries. Water systems often allow efficient water uses via water reuse and recirculation in the paper, petrochemical, and steel industries which necessitate a lot of freshwater within the process. Defining network layout connecting water-using process is frequently accomplished by using water pinch technology which optimizes freshwater entering the process and also reduces the wastewater. In this review, recent researches and case studies of water pinch technology which can find the bottleneck of the water stream at the water reuse designing stage are introduced. Necessity of water pinch technology is illustrated by examples of real industries. Recent studies on simultaneous energy and water minimization and water-reuse network among industries in eco-industrial park(EIP) are also introduced.

Inactivation of Mycobacterium using Ultrasonic and Ultraviolet Sequential Processes (초음파와 자외선 연계공정을 이용한 Mycobacterium 불활성화)

  • Kim, Wangi;Jung, Yeonjung;Yoon, Yeojoon;Lim, Gwanhun;Kim, Jongbae;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • 제28권1호
    • /
    • pp.57-62
    • /
    • 2012
  • In this study, the inactivation efficiency of Mycobacterium marinum was evaluated in buffered water (pH 7) using a low pressure ultraviolet (LP-UV) lamp, ultrasonic (US), and UV/US sequential processes. In the UV alone process, 3 log inactivation of the M. marinum was achieved with a UV dose of $120mJ/cm^2$. However, a tailing phase was later observed because M. marinum has a high tendency for cell aggregation. Even though the M. marinum was not inactivated in the US alone process, the hydrophobicity decreased and turbidity increased due to the crumbling of the cell aggregation. Among the candidate processes which were UV alone, US-UV sequential process and UV-US-UV sequential process, the US-UV sequential process showed the highest synergistic effects for M. marinum inactivation. Consequently, US is a very useful process as a UV irradiation pre-treatment to inactivate M. marinum in water.

Enhancement of L-Threonine Production by Controlling Sequential Carbon-Nitrogen Ratios during Fermentation

  • Lee, Hyeok-Won;Lee, Hee-Suk;Kim, Chun-Suk;Lee, Jin-Gyeom;Kim, Won-Kyo;Lee, Eun-Gyo;Lee, Hong-Weon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.293-297
    • /
    • 2018
  • Controlling the residual glucose concentration is important for improving productivity in $\text\tiny{L}$-threonine fermentation. In this study, we developed a procedure to automatically control the feeding quantity of glucose solution as a function of ammonia-water consumption rate. The feeding ratio ($R_{C/N}$) of glucose and ammonia water was predetermined via a stoichiometric approach, on the basis of glucose-ammonia water consumption rates. In a 5-L fermenter, 102 g/l $\text\tiny{L}$-threonine was obtained using our glucose-ammonia water combined feeding strategy, which was then successfully applied in a 500-L fermenter (89 g/l). Therefore, we conclude that an automatic combination feeding strategy is suitable for improving $\text\tiny{L}$-threonine production.