• Title/Summary/Keyword: process structural constraints

Search Result 147, Processing Time 0.023 seconds

A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties (적층판 결합공정의 불확정성을 고려한 강건최적설계)

  • Choi Joo-Ho;Lee Woo-Hyuk;Youn Byeng-Dong;Xi Zhimin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.836-840
    • /
    • 2006
  • Design optimization of layered plates bonding process is conducted to achieve high product quality by considering uncertainties in a manufacturing process. During the cooling process of the sequential sub-processes, different thermal expansion coefficients lead to residual stress and displacement. thus resulting in defects on the surface of the adherent. So robust process optimization is performed to minimize the residual stress mean and variation of the assembly while constraining the distortion as well as the instantaneous maximum stress to the allowable limits. In robust process optimization, the dimension reduction (DR) method is employed to quantify both reliability and quality of the layered plate bonding. Using this method. the average and standard deviation is estimated. Response surface is constructed using the statistical data obtained by the DRM for robust objectives and constraints. from which the optimum solution is obtained.

  • PDF

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Reliability-based Design Optimization using Multiplicative Decomposition Method (곱분해기법을 이용한 신뢰성 기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Design optimization is a method to find optimum point which minimizes the objective function while satisfying design constraints. The conventional optimization does not consider the uncertainty originated from modeling or manufacturing process, so optimum point often locates on the boundaries of constraints. Reliability based design optimization includes optimization technique and reliability analysis that calculates the reliability of the system. Reliability analysis can be classified into simulation method, fast probability integration method, and moment-based reliability method. In most generally used MPP based reliability analysis, which is one of fast probability integration method, if many MPP points exist, cost and numerical error can increase in the process of transforming constraints into standard normal distribution space. In this paper, multiplicative decomposition method is used as a reliability analysis for RBDO, and sensitivity analysis is performed to apply gradient based optimization algorithm. To illustrate whole process of RBDO mathematical and engineering examples are illustrated.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Optimum design of steel frames with semi-rigid connections and composite beams

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.299-313
    • /
    • 2015
  • In this paper, an optimization process using Genetic Algorithm (GA) that mimics biological processes is presented for optimum design of planar frames with semi-rigid connections by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints as indicated in AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), maximum lateral displacement constraints and geometric constraints are considered for optimum design. Two different planar frames with semi-rigid connections taken from the literature are carried out first without considering concrete slab effects in finite element analyses and the results are compared with the ones available in literature. The same optimization procedures are then repeated for full and semi rigid planar frames with composite (steel and concrete) beams. A program is developed in MATLAB for all optimization procedures. Results obtained from this study proved that consideration of the contribution of the concrete on the behavior of the floor beams provides lighter planar frames.

The Automotive Door Design with the ULSAB Concept Using Structural Optimization (구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계)

  • 신정규;송세일;이권희;박경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1995
  • The weighting strategy has received a great attention and has been widely applied to multicriterion optimization. This gaper examines a global criterion method (GCM) with the weighting objectives strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals, constraints and variables. Most of the constraints are originated from analysis of engineering mechanics. The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM). In the design process a weighting parameter with fuzzy information is introduced into the design and decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves the final design.

Multilevel Multiobjective Optimization for Structures (다단계 다목적함수 최적화를 이용한 구조물의 최적설계)

  • 한상훈;최홍식
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Multi-level Multi-objective optimization(MLMO) for reinforced concrete framed structure is performed, and compared with the results of single-level single-objective optimization. MLMO method allows flexibility to meet the design needs such as deflection and cost of structures using weighting factors. Using Multi-level formulation, the numbers of constraints and variables are reduced at each levels, and the optimization formulation becomes simplified. The force approximation method is used to reflect the variation in design variables between the substructures, and thus coupling is maintained. And the linear approximated constraints and objective function are used to reduce the number of structural analysis in optimization process. It is shown that the developed algorithm with move limit can converge effectively to optimal solution.

  • PDF

Continuous size optimization of large-scale dome structures with dynamic constraints

  • Dede, Tayfun;Grzywinski, Maksym;Selejdak, Jacek
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.397-405
    • /
    • 2020
  • In this study size optimization of large-scale dome structures with dynamic constraints is presented. In the optimal design of these structure, the Jaya algorithm is used to find minimal size of design variables. The design variables are the cross-sectional areas of the steel truss bar elements. To take into account the constraints which are the first five natural frequencies of the structures, the finite element analysis is coded in Matlab programs using eigen values of the stiffness matrix of the dome structures. The Jaya algorithm and the finite elements codes are combined by the help of the Matlab - GUI (Graphical User Interface) programming to carry out the optimization process for the dome structures. To show the efficiency and the advances of the Jaya algorithm, 1180 bar dome structure and the 1410 bar dome structure were tested by taking into the frequency constraints. The optimal results obtained by the proposed algorithm are compared with those given in the literature to demonstrate the performance of the Jaya algorithm. At the end of the study, it is concluded that the proposed algorithm can be effectively used in the optimal design of large-scale dome structures.