• Title/Summary/Keyword: process sequence design

Search Result 356, Processing Time 0.026 seconds

Implementation of GA Processor for Efficient Sequence Generation (효율적인 DNA 서열 생성을 위한 진화연산 프로세서 구현)

  • Jeon, Sung-Mo;Kim, Tae-Seon;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.376-379
    • /
    • 2003
  • DNA computing based DNA sequence Is operated through the biology experiment. Biology experiment used as operator causes illegal reactions through shifted hybridization, mismatched hybridization, undesired hybridization of the DNA sequence. So, it is essential to design DNA sequence to minimize the potential errors. This paper proposes method of the DNA sequence generation based evolutionary operation processor. Genetic algorithm was used for evolutionary operation and extra hardware, namely genetic algorithm processor was implemented for solving repeated evolutionary process that causes much computation time. To show efficiency of the Proposed processor, excellent result is confirmed by comparing between fitness of the DNA sequence formed randomly and DNA sequence formed by genetic algorithm processor. Proposed genetic algorithm processor can reduce the time and expense for preparing DNA sequence that is essential in DNA computing. Also it can apply design of the oligomer for development of the DNA chip or oligo chip.

  • PDF

A Study on the Determination of Initial Biller for Axisymmetric Cold Forging Products Using Neural Networks (신경망을 이용한 축대칭 냉간 단조품의 초기 소재 결정에 관한 연구)

  • 김영호;배원병;박종옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.217-222
    • /
    • 1994
  • This paper describes the determination of optimal initial billet size for axisymmetric cold forging products using neural networks. The determination of optimal initial billet size is very important in forging design and forming sequence design, because the result of such designs and forming load can be different by variable initial billet sizes. The forming difficulty has been defined as the degree of difficulty in forming by 3 process ' forward extrusion, backward extrusion and upsetting. By neural networks a forming difficulty can be determined with the ratio of shape and forming process. From the graph of maximum, minimum, and average forming difficulties by variable billet sizes, the optimal billet size can be determined. The initial billets of a solid part and a hollow part whichwas determined by this study are compared with the sequence drawing generated by the one of forming sequence design system.

  • PDF

An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die(II) (타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(II))

  • 배원락;박동환;박상봉;강성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The study is insufficient on process planning of the elliptical deep drawing product. Thus, in this present study, the expert system for elliptical deep drawing products was constructed by using process sequence design. The expert system was developed to be based on the general concept of each entity. The system was developed in this work consists of sixth modules. The first one is a shape recognition module to recognize non-axisymmetric products and to generate Entity_list. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create suggested blanks of three shapes with the identical surface area. The fourth one is shape design module based on the production rules that play the most important role in an expert system for manufacturing. The production rules are generated and upgraded by inter- viewing field engineers, plastic theory and experiments. The fifth and sixth ones are a graphic module to visualize results of the expert system and a post module to rise user's convenience, respectively. According to constructed the expert system for process sequence design, it was possible to reduce the lead time.

A Study on the Interior Design of Mosi Market Considering the Circulation Process and Merchandising System (유통과정 및 판매시스템을 고려한 모시유통센타의 실내계획에 관한 연구)

  • Kim, Eun-Joong
    • Korean Institute of Interior Design Journal
    • /
    • no.34
    • /
    • pp.78-85
    • /
    • 2002
  • This study aims at alalyzing the circulation process, merchandising system of Mosi(Korean traditional garment material), and accessing the way of interior design of Mosi market. There are three kinds of garment material of Mosi such as Pilmosi, Gootmosi, Taemosi classified by manufacturing process. At Mosi market, these three materials are sold in due sequence. Mosi market needs three space zones such as Mosi market space, inspecting space of Mosi and resting place, and these three spaces have strong interrelationship, so designer should plan not to disterb the moving flow. In the Mosi market space there should be divided by three zones such as Pilmosi marketing place, Gootmosi marketing place, and Taemosi marketing place in due sequence. The furniture of Mosi market place divided two kinds such as furniture for Pilmosi and that of Gootmosi or Taemosi. The proper form of furniture for Pilmosi is circular arc bar counter and that for Gootmosi or Taemosi is low rectangular table.

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF

A Study on the Process Design Expert System in Motor-Frame Die of an Automobile (자동차 모터 프레임 금형의 공정설계 전문가 시스템에 관한 연구)

  • Bae W. R.;Park D. H.;Park S. B.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.132-135
    • /
    • 2000
  • A process design expert system for rotationally symmetric deep drawing products has been developed The application of the expert system to non-axisymmetric components, however, has not been reported yet. Thus, in this present study, the expert system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first one is a recognition of shape module to recognize non-axisymmetric products. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create an oval-shaped blank with the identical surface area. The forth one is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers.

  • PDF

SOS-Net for Generattion of PLC Program (PLC 프로그램 생성을 위한 SOS-Net)

  • Ko, Min-Suk;Hong, Sang-Hyun;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • Because of the reduced product life-cycle, industries are making an effort to bring down the process planning time. In the traditional approach, we have to analyze established process planning, then design the time chart based on process information and drawing the formal time chart such as SOP(sequence of operation). Thereafter, it will be converted to PLC code that is a time consuming and redundant job. Similarly, Industrial automated process uses PLC Code to control the factory; however, control information and control code(PLC code) are difficult to understand. Hence, industries prefer writing new control code instead of using the existing one. It shows the lack of information reusability in the existing process planning. As a result, to reduce this redundancy and lack of reusability, we propose SOS-Net modeling method. Unlike past stabilized process planning that is rigid to any change; our proposed SOS-Net modeling method is more adaptable to the new changes. The SOS-Net model is easy to understand and easy to convert into PLC Code accordingly. Therefore, we can easily modify the control information and reuse it for new process planning. The proposed model plays an intermediary role between process planning and PLC code generation. It can reduce the process planning and implementation time as well as cost.

Development of Combined Drawing Process for Automotive Cowl Cross Bar with Variable Diameters (가변직경을 갖는 자동차용 카울크로스바의 복합인발공정 개발)

  • Kim, H.S.;Youn, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.236-239
    • /
    • 2009
  • Cowl cross bar, a component of automotive cockpit module, has been manufactured by using welding processes of several tube parts with different diameters. However, in order to reduce costs and increase the quality, it is required to develop a new production method to manufacture the cowl cross bar as one-piece In this study, therefore, eliminating the welding process, tube drawing process which is one of metal forming processes was designed by using combined drawing technique. In addition, the selectable range of area reduction ratio was defined as a design guideline and the designed process sequence was verified by finite element analysis.

  • PDF

A Genetic Algorithm for Manufacturing Cell Design Based on Operation Sequence (공정순서에 기초한 생산셀 설계를 위한 유전 알고리즘 접근)

  • 문치웅;김재균
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.123-133
    • /
    • 1998
  • A cell design model based on operation sequence is proposed for maximizing the total parts flow within cells considering the data of Process plans for parts, Production volume, and cell size. A relationship between machines is calculated on the basis of the process plans for parts obtained from process plan sheets. Then the machines are classified into machine cells using the relationship. The model is formulated as a 0-1 integer programming and a genetic algorithm approach is developed to solve the model. The developed approach is tested and Proved using actual industrial data. Experimental results indicate that the approach is appropriate for large-size cell design problems efficiently.

  • PDF

Development of Automated forging Design System for Forging Process Design of Stepped Asymmetric Parts (다단 비축대칭 부품의 단조 공정설계를 위한 단조품설계 자동화)

  • 조해용;허종행;민규식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.102-107
    • /
    • 2000
  • This study describes computer-aided design system for stepped asymmetric forgings. To establish the appropriate process sequence, an integrated approach based on a rule-base system was accomplished. This system has four modules, which are undercut prevention module, shape cognition module, 3D modelling module and corner/fillet correction module. These modules can be used independently or at all. The proposed shape cognition method could be widely used in forging design of asymmetric parts.

  • PDF