• Title/Summary/Keyword: process measurement

Search Result 5,167, Processing Time 0.036 seconds

A Study on the Development of the Learning Organization Measurement (학습조직화 측정도구 개발을 위한 연구)

  • Jeong, Seok-Hee;Lee, Kyung-Seon;Lee, Myung-Ha;Kim, In-Sook
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.9 no.1
    • /
    • pp.75-88
    • /
    • 2003
  • Purpose : The Purposes of this study was to develop a learning organization measurement for nurses, and to test the validity and reliability of the measurement. Method : This study was conducted through 3 phases -theoretical framework choice, measurement items selection, and the testing of validity and reliability. In order to test reliability and validity of the measurement, data were collected from the 261 nurses, working in the 1 hospital with more 800 beds. The data obtained were analyzed by SPSS for Window program using percentages, Factor Analysis, Cronbach's alpha coefficients. Result : As a result of the study, 2 scales -Learning Organization Building Scale, and Knowledge Management Process Scale- were developed. Learning Organization Building Scale was consisted of 23 items, 5 factors. 5 factors explained 60.26% of the total variance, and the Cronbach's alpha of this scale was .8807. Knowledge Management Process Scale was consisted of 17 items, 4 factors. 4 factors explained 66.14% of the total variance, and the Cronbach's alpha of this scale was .9147. Conclusion : The Study supports the validity and reliability of the scales. Therefore, these scales can be effectively utilized for many researches about Learning organization of Nurse, and Nursing organization in the Hospital Setting.

  • PDF

Development of a 3-D Position Measurement Algorithm using 2-D Image Information (2차원 영상 정보를 이용한 3차원 위치 측정 알고리즘 개발)

  • Lee, J.H.;Jung, S.H.;Kim, D.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.141-148
    • /
    • 2013
  • There are several problems in the conventional 2-D image processing and 3-D measurement systems. In the case of the 2-D image processing system, it is not possible to detect elevation data. In a 3-D measurement system, it requires a skillful operator and a lot of time for measuring data. Also, there exist data errors depending on operators. The limitation of detecting elevation data in the 2-D image processing system can be solved by laser diodes. In this study an algorithm that measures the accurate data in a subject face to be detected by combining laser diodes and a commercial CCD camera is developed. In the development process, a planar equation is developed using laser diodes and the equation is used to obtain a normal vector. Based on the results, an algorithm that transforms commercial CCD camera coordinates to 3-D coordinates is proposed. The completed measurement method will be applied to replace a manual measurement system for vehicle bodies and parts by an automated system.

Gauge Capability Analysis and Designed Experiments (계측기 능력분석과 실험계획법)

  • Baik, Jaiwook;Jo, Jinnam
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.3
    • /
    • pp.145-159
    • /
    • 1996
  • In today's organization, measurement plays a crucial role in helping improve process or quality. In this paper, we review the measurement error study, classical gauge repeatability and reproducibility study, and designed experiment suited for the determination of the measurement capability. Measurement error study is very simple to use but is rather crude. Hence, it should be used as a preliminary study to determine whether further study is necessary. Classical gauge repeatability and reproducibility (GR&R) study is the most common technique for evaluation of gauge capability. It calculates a percentage that relates the repeatability, reproducibility, and overall R&R to the specification range for the parameter measured. Hence, the individual repeatability and reproducibility statistics will indicate the area on which to concentrate. However, GR&R study only gives a point estimate of each component, which leaves a room for improvement. It is always good to integrate the use of control charts to ascertain the statistical stability of the measurement process. The tools of statistical experimental design are available for a comprehensive design and analysis of the measurement process. Hence, in this paper, we present gauge capability analysis as an experimental design problem and compare it with the classical GR&R study.

  • PDF

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

The Volume Measurement of Air Flowing through a Cross-section with PLC Using Trapezoidal Rule Method

  • Calik, Huseyin
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.872-878
    • /
    • 2013
  • In industrial control systems, flow measurement is a very important issue. It is frequently needed to calculate how much total fluid or gas flows through a cross-section. Flow volume measurement tools use simple sampling or rectangle methods. Actually, flow volume measurement process is an integration process. For this reason, measurement systems using instantaneous sampling technique cause considerably high errors. In order to make more accurate flow measurement, numerical integration methods should be used. Literally, for numerical integration method, Rectangular, Trapezoidal, Simpson, Romberg and Gaussian Quadrature methods are suggested. Among these methods, trapezoidal rule method is quite easy to calculate and is notably more accurate and contains no restrictive conditions. Therefore, it is especially convenient for the portable flow volume measurement systems. In this study, the volume measurement of air which is flowing through a cross-section is achieved by using PLC ladder diagram. The measurements are done using two different approaches. Trapezoidal rule method is proposed to measure the flow sensor signal to minimize measurement errors due to the classical sampling method as a different approach. It is concluded that the trapezoidal rule method is more effective than the classical sampling.

A Standard Method for Progress Measurement in a Petrochemical Plant EPC Project (석유화학 플랜트 EPC 사업의 진도율 산정표준의 제안)

  • Cho, Hong-Yeon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2011
  • In proportion to continuing growth of overseas plant market and the trend of its mega scale of the project, the importance of management is significantly emphasized for the successful execution of the project. And it is recognized that progress control is the most important management item amongst the others in the management. Progress control is importance of progress measurement for performance measurement and process control of project, but it is hardly obtainable securing the objectivity in the progress measurement since the progress measurement are being applied differently in accordance with the project conditions and the experience level of the person in charge for the progress control. This study has conducted as following to propose a standard method for progress measurement in a petrochemical plant protect. Domestic and overseas plant projects are investigated variously with the applied method of progress measurement, and the deduced problem of progress measurement. And then standard method for progress measurement of engineering, procurement, construction and commissioning has been proposed according to comparison and analysis of practices in domestic & overseas plant project, procedures for progress control in the globally reputed petrochemical client, company rules and recommendation of the expert in progress control.

  • PDF

Ultra-Precision Machining Using Fast Tool Servo and On-Machine Form Measurement of Large Aspheric Mirrors (Fast Tool Servo를 이용한 대구경 반사경의 초정밀 가공 및 기상 형상 측정)

  • 김의중;송승훈;김민기;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.129-134
    • /
    • 2000
  • This paper presents the development of ultra-precision machining process of large aspheric aluminum mirrors with a maximum diameter of 620 mm. An ultra-precision machine, "Nanoturn60", developed by Daewoo Heavy Industries Ltd. is used for machining and motion errors of the machine are compensated by using the FTS developed by IAE(Institue for Advanced Engineering) during the machining process. To check the form accuracy of machined aspheric surfaces, on-machine form measurement system is developed. This measurement system consists of air bearing touch probe, straight edge, and laser sensor. With in-process error compensation by FTS(Fast Tool Servo), aspheric mirrors with the from accuracy of submicron order are obtained. obtained.

  • PDF

On-Machine Measurement Error Compensation Using Ball-bar System (볼바 시스템을 이용한 기상측정오차 보정)

  • 이세희;서태일;조명우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.56-63
    • /
    • 2001
  • The objective of this research is to develop a measurement error compensation method for On-Machine Measurement (OMM) process based on a closed-loop configuration. Geometric errors of vertical machining center are measured using ball-bar system, and probing errors are measured using master ball. The errors are represented using homogeneous trans-formation matrices and the closed-loop configuration method is applied to calculate 3-dimensional errors. To verify the effectiveness of the method proposed in this research, compensated results are compared to the data using CMM process, and the results are analyzed. The results show the proposed method can be applied in OMM process to make the measured data more reliable.

  • PDF

Real-Time Measurement Technology for Bi-directional Diameter in Ground Spindles (IN-LINE 진원도 측정을 위한 비접촉식 3접점법)

  • Bae, Jong-Il;Je, Chang-Woo;Kim, Do;Lee, Dan-Hyung;Jung, Young-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2537-2539
    • /
    • 2002
  • This paper presents an in-process measurement system for shaft radius measurement during grinding process. This system does not require to stop the grinding process, which can enhance productivity and quality. For data analysis, the measurement system is modeled as a linearized discrete form where the states with noise are estimated by an extended Kalman filter. This system has been validated through simulations and experiments.

  • PDF

SPDR Scheme for Disturbance Reduction in ROT Process with Measurement Delay (측정지연이 있는 ROT 공정의 외란제거를 위한 SPDR 제어기 설계)

  • Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1023-1029
    • /
    • 2014
  • In this paper, we propose an SPDR (Smith Predictor for Disturbance Reduction) scheme to improve the temperature control by reduction of the disturbance in ROT process with measurement delay. The proposed controller is a combination of Astrom's modified Smith predictor with a disturbance reduction controller and a grey predictor. The grey prediction is used to calculate the inverse of the measurement delay and to predict future variations and tendencies of system output. The simulation results demonstrate the successful performance of the proposed disturbance reduction controller and enhance the robustness of the proposed control scheme.