• Title/Summary/Keyword: process measurement

Search Result 5,167, Processing Time 0.035 seconds

Case Study Plan for Information Security SLA Performance System in Public Sector (공공부문 정보보안 SLA 성과체계 사례연구)

  • Jeong, Jae Ho;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.763-777
    • /
    • 2021
  • Information security started as an IT operation process and is now recognized as an important issue of information technology, and each international organization is newly defining the concept. Information security itself is a new combination of IT technologies, a set of technologies and a technology area. As IT outsourcing becomes common in many public sectors, SLAs are introduced to evaluate the level of IT services. In the area of information security, many studies have been conducted on the derivation and selection of SLA performance indicators, but it is difficult to find a way to apply the performance indicators to service level evaluation and performance systems. This thesis conducted a study on the application of a service evaluation system for information security performance indicators based on the public sector and a performance system including compensation regulations. It presents standards and rewards(incentive and penalty) that define expectation and targets of performance indicators that take into account the environment and characteristics of a specific public sector, and defines appropriate SLA costs. It proposes a change plan for the organizational structure for practical SLA application and service level improvement.

Improving the Viability of Freeze-dried Probiotics Using a Lysine-based Rehydration Mixture

  • Arellano, Karina;Park, Haryung;Kim, Bobae;Yeo, Subin;Jo, Hyunjoo;Kim, Jin-Hak;Ji, Yosep;Holzapfel, Wilhelm H.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • The probiotic market is constantly continuing to grow, concomitantly with a widening in the range and diversity of probiotic products. Probiotics are defined as live microorganisms that provide a benefit to the host when consumed at a proper dose; the viability of a probiotic is therefore of crucial importance for its efficacy. Many products undergo lyophilization for maintaining their shelf-life. Unfortunately, this procedure may damage the integrity of the cells due to stress conditions during both the freezing and (vacuum-) drying process, thereby impacting their functionality. We propose a lysine-based mixture for rehydration of freeze-dried probiotics for improving their viability during in vitro simulated gastric and duodenum stress conditions. Measurement of the zeta potential served as an indicator of cell integrity and efficacy of this mixture, while functionality was estimated by adhesion to a human enterocyte-like Caco-2 cell-line. The freeze-dried bacteria exhibited a significantly different zeta potential compared to fresh cultures; however, this condition could be restored by rehydration with the lysine mixture. Recovery of the surface charge was found to influence adhesion ability to the Caco-2 cell-line. The optimum lysine concentration of the formulation, designated "Zeta-bio", was found to be 0.03 M for improving the viability of Lactiplantibacillus plantarum Lp-115 by up to 13.86% and a 7-strain mixture (400B) to 41.99% compared to the control rehydrated with distilled water. In addition, the lysine Zeta-bio formulation notably increased the adherence ability of lyophilized Lp-115 to the Caco-2 cell-line after subjected to the in vitro stress conditions of the simulated gastrointestinal tract passage.

Development of a Distributed File System for Multi-Cloud Rendering (멀티 클라우드 렌더링을 위한 분산 파일 시스템 개발 )

  • Hyokyung, Bahn;Kyungwoon, Cho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.77-82
    • /
    • 2023
  • Multi-cloud rendering has been attracting attention recently as the computational load of rendering fluctuates over time and each rendering process can be performed independently. However, it is challenging in multi-cloud rendering to deliver large amounts of input data instantly with consistency constraints. In this paper, we develop a new distributed file system for multi-cloud rendering. In our file system, a local machine maintains a file server that manages versions of rendering input files, and each cloud node maintains a rendering cache manager, which performs distributed cooperative caching by considering file versions. Measurement studies with rendering workloads show that the proposed file system performs better than NFS and the uploading schemes by 745% and 56%, respectively, in terms of I/O throughput and execution time.

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Driving under the influence Prevention System Using Fingerprint sensors with Arduino (아두이노를 기반으로 지문센서를 활용한 음주운전방지장치)

  • Son, Jung-Hun;Lee, Ho-Yeong;Bae, Hyun-Ji;Kim, Yun-Ho;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.969-976
    • /
    • 2022
  • In this paper, a drunk driving prevention system was implemented to measure drunk driving before starting to prevent drunk driving accidents caused by complacency after drinking. In order to prevent a situation in which a driver but not a driver authenticates instead of a driver, the identification means was strengthened and the alcohol sensor was implemented to operate when the wind sensor measured above the set value set. Through this system, the driver's alcohol measurement process was strengthened. Sensors were determined through various experiments, and finally, when the alcohol concentration was 0.03% or more, the DC motor was stopped and the vehicle was designed to be unable to operate, thereby implementing a system in which drunk driving was prevented in advance.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Clarification the Current Situation of Deterioration and Its Causes of Modernization Heritage Built with Bricks in Japan: A Case Study of Long-Term Monitoring Investigation at Sarushima Battery, Yokosuka, Japan

  • Fukami, Risako;Matsui, Toshiya;Kawamoto, Mayumi
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • A long-term monitoring investigation at Sarushima Battery (Kanagawa, Japan), which is one of the modernization heritages was conducted from 2017.06 to 2020.12. The investigation of the temperature and relative humidity (RH), measurement of the amount of brick decay, and X-ray diffraction analysis of the brick decay was conducted to understand in detail the environment in which the historical brick structure, the state of deterioration, identify the factors of deterioration. Furthermore, it was discussed whether the suitability of these investigation methods for assessing the status, identifying the level of deterioration and the factors that led to deterioration at the historical brick heritages. It was found that the brick deterioration at the site progressed especially in two periods: in April, and from June to August. These periods coincided with the period when the RH inside the structure decreased, and the Toyo-gumi bricks were in the process of absorbing moisture. Several different types of salts were detected in brick decay, especially thenardite, which is considered highly hazardous and destructive during periods when the amount of brick decay increased. Therefore, the RH in the structure and the salts present in the bricks were identified as one of the factors in the deterioration of the bricks at the site. The methods used in this study are appropriate as the initial survey methods for investigating the current conditions and identifying the causes of deterioration because it is possible to understand the environment within the modernization heritages, grasp the details of deterioration progression, and identify the characteristics of deterioration progression and its factors through long-term investigation using the simple methods.

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.