• Title/Summary/Keyword: process measurement

Search Result 5,168, Processing Time 0.037 seconds

Respiratory Activity of Bacteria in Various Concentrations of Glucose (박테리아의 산소소비량에 관한 실험적 고찰)

  • Choi, Hyung-Ja
    • Journal of Preventive Medicine and Public Health
    • /
    • v.10 no.1
    • /
    • pp.134-137
    • /
    • 1977
  • The most efficient method for reducing the organic content of dilute liquid waste is by aerobic-biological treatment. Basically, the organisms responsible for treatment possess the ability to decompose complex organic compounds and to use the energy so liberated for their bodily functions: reproduction, growth, locomotion and so on. That part of organic matter used to produce energy is converted to the essentially stable end products of carbon dioxide, water and ammonia, while the remainder is converted to new cells which can be settled and thus removed from the liquid before the waste is discharged to the receiving body water. Oxygen must be supplied continuously during the aerobic process. In the field of sewage treatment the Warburg respirometer is used mainly for the measurement of the oxygen uptake of samples. In this experiment the Warburg constant volume respirometer was used to determine the oxygen uptake by bacteria in the presence of various glucose concentrations. The rate of oxygen uptake by the bacteria was expressed as the respiratory quotient. The result indicated that the oxygen uptake was proportional to the glucose concentration. The expecting equation of the regression line was Y=7.7+0.12X where Y: respiratory quotient, ${\mu}l.\;O_2$ taken up/mg. dry wt. bacterium/hr. X: concentration of glucose, mg/l

  • PDF

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 옥명렬;서진유;홍경태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

Variation of Sedimentation & Dewaterability Characteristics of Sewage Sludge under Various Coagulants (응집제 종류에 따른 하수 슬러지의 침강 및 탈수 특성 변화)

  • Baik, Seon Jai;Jo, Jung Min;Song, Hyun Woo;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • The purpose of this study is to investigate the effect of various types of coagulant on dewaterability and settleability of sewage sludge for the application of dewatering process. Cationic organic coagulants and inorganic coagulants of the aluminium base were used; PAC (Poly Aluminium chloride, $Al_2O_3$ 17%) and C-210P (0.2%). After Jar test, PAC 26 mg/L and 0.2% C-210P 55 mg/L was decided as the optimum concentration of the coagulant according to zeta potential measurement. pH, alkalinity and viscosity were measured in all experiments and the data on sedimentation characteristics is analyzed by SDI, SVI sedimentation rate and solid flux. The SRF(Specific Resistance of Filtration) experiment was conducted with the result of single and dual injection system as the dewaterability experiment. As a result, the organic coagulant making large floc has good characteristics of sedimentation and agglutination. Also, it is observed that the organic coagulants injection has a better dewaterability efficiency of coagulants under the condition of the lowest SRF value, followed by dual and inorganic coagulants injection.

Raman Spectroscopic Studies of $YBa_2Cu_3O_7$ Coated Conductors ($YBa_2Cu_3O_7$ Coated Conductors의 Raman 분광학 연구)

  • ChoiD Mi Kyeung;Mnh Nguyen Van;Bae J. S.;JoD William;Yang In-Sang;Ko Rock-kil;Ha Hong Soo;Park Chan
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.95-98
    • /
    • 2005
  • We present results of Raman spectroscopic studies of superconducting $YBa_2Cu_3O_7$ (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  • PDF

Optimal Design of Orifice typed Distribution Channel using Step Method Program (Step method 프로그램을 이용한 orifice 분배수로의 최적 설계에 관한 연구)

  • Park, No-Suk;Park, Sangcheol;Kim, Sung-soo;Lee, Seonjoo;Jeong, Nam-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.691-700
    • /
    • 2006
  • This study conducted to optimize the design and operation of orifice typed distribution channels which were generally constructed to link the rapid mixing process and flocculation/sedimentation basin. To accomplish the goal of this study, programming step method using FORTRAN 90, was applied it to simulate the performance of existing distribution channel in the selected S DWTP (Drinking Water Treatment Plant). The proposed step method program was validated in terms of the feasibility with comparison between the measurement and prediction value in each orifice. From the evaluation results of the current conditions with the design and operation, it was revealed that the existing gradient of the tapered channel is not appropriate. Also, we suggested that in the case of the inlet width being 3.5m, reducing the downstream width by about 0.5m would make more equitable distribution flow in the channel. Consequently, dealing with various conditions of the design and operation with distribution channel, we could conclude that for the parallel typed channel, as the width is wider and the diameter of orifice is smaller, the more equitable distribution occur. In addition, the inlet flowrate and the number of orifice can affect the flow velocity in the channel.

Study on bio-gas production efficiency from industrial organic waste (산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구)

  • Lee, Horyeong;Jin, Hyoeon;Shin, Daeyewn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF

Design of Double Balanced MMIC Mixer for Ku-band (Ku-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • Ryu Keun-Kwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.97-101
    • /
    • 2003
  • A MMIC (monolithic microwave integrated circuit) mixer chip using the Schottky diode of an InGahs/CaAs p-HEMT process has been developed for the receiver down converter of Ku-band. A different approach to the MMIC mixer structure is applied for reducing the chip size by the exchange of ports between If and LO. This MMIC covers with RF (14.0 - 14.5 GHz) and If (12.252 - 12.752 GHz). According to the on-wafer measurement, the miniature (3.3X3.0 m) MMIC mixer demonstrates conversion loss below 9.8 dB, RF-to-IF isolation above 23 dB, LO-to-IF isolation above 38 dB, respectively.

  • PDF

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin;Lee, Changhyup;Oh, In Seoup;Park, Sungchan;Kim, Hwan Chul;Kim, Myung Jong
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.