• Title/Summary/Keyword: process measurement

Search Result 5,168, Processing Time 0.032 seconds

The Process of Anode Oxidation on $Ta_2O_5$ by Electrolyte of Ammonium Tartrate (Ammonium Tartrate를 전해질로 사용한 $Ta_2O_5$의 음극 산화 공정)

  • Hur Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, we establish a mode oxidation process for formation of $Ta_2O_5$ insulator film. The voltage drop in the electrolyte is affected not in voltage change but in current change. If the voltage drop in the electrolyte is same with cathode oxidation voltage, the current changes logarithmically in proportion to the voltage drop in interface of Ta2O5/electrolyte. As a result of the measurement on the electrical property of $Ta_2O_5$ insulator film, when the thickness of the insulator film is $1500\AA$, the breakdown voltage is 350volts Ind dielectric constant is 29.

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

Growth and UV Emission of Preferred Oriented ZnO Nanowires Using Hydrothermal Process (수열합성법을 이용하여 우선 배향된 ZnO 나노와이어 성장 및 발광 특성)

  • Kim, Jong-Hyun;Lim, Yun-Soo;Kim, Sung-Hyun;Jo, Jin-Woo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.660-665
    • /
    • 2011
  • 1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the <001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of $Zn^{2+}$ and $OH^{-1}$ and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were $1.97{\mu}m$ and $0.07{\mu}m$, respectively, and the aspect ratio was 28.1 with the preferred orientation along the <001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.

Vacuum Freeze Drying of Skim Milk Solution in a Cylindrical Container: Comparison of Experimental and Numerical Results (원통형 용기에 담긴 탈지분유 용액의 진공동결건초 : 실험결과와 해석결과의 비교연구)

  • Song, Chi-Seong;Nam, Jin-Hyeon;Kim, Chan-Jung;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.288-301
    • /
    • 2002
  • A vacuum freeze drying experiment of skim milk solution in a cylindrical container is conducted to investigate the multi-dimensional drying characteristics of the process during the primary drying stage. Temperature histories at several positions are measured under the same process condition that is carefully controlled. Then the measured temperature histories at different positions are combined to produce instantaneous temperature distribution fields inside the cylindrical container. Along with the temperature measurement, the mass reduction history of the skim milk solution is also measured. From the measured temperature distribution curved configurations of sublimation interfaces and 2-dimensional heat transfer is inferred. The freeze drying under the present experimental setup is simulated with a calculation program that is based on a finite volume method with a moving grid system. Good agreements between the numerical and experimental results are observed. The present experimental results and the numerical approaches can be useful information in developing the analysis tools for practical vacuum freeze drying processes.

The Effect of Uncinate Process Resection on Subsidence Following Anterior Cervical Discectomy and Fusion

  • Lee, Su Hun;Lee, Jun Seok;Sung, Soon Ki;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.550-559
    • /
    • 2017
  • Objective : Subsidence is a frequent complication of anterior cervical discectomy and fusion. Postoperative segmental micromotion, thought to be a causative factor of subsidence, has been speculated to increase with uncinate process resection area (UPR). To evaluate the effect of UPR on micro-motion, we designed a method to measure UPR area based on pre- and postoperative computed tomography images and analyzed the relationship between UPR and subsidence as a proxy of micro-motion. Methods : We retrospectively collected clinical and radiological data from January 2011 to June 2016. A total of 38 patients (53 segments) were included. All procedures included bilateral UPR and anterior plate fixation. UPR area was evaluated with reformatted coronal computer tomography images. To reduce level-related bias, we converted UPR area to the proportion of UPR to the pre-operative UP area (pUPR). Results : Subsidence occurred in 18 segments (34%) and positively correlated with right-side pUPR, left-side pUPR, and the sum of bilateral pUPR (sum pUPR) (R=0.310, 301, 364; p=0.024, 0.029, 0.007, respectively). Multiple linear regression analysis revealed that subsidence could be estimated with the following formula : $subsidence=1.522+2.7{\times}sum\;pUPR$($R^2=0.133$, p=0.007). Receiver-operating characteristic analysis determined that sum $pUPR{\geq}0.38$ could serve as a threshold for significantly increased risk of subsidence (p=0.005, area under curve=0.737, sensitivity=94%, specificity=51%). This threshold was confirmed by logistic regression analysis for subsidence (p=0.009, odds ratio=8.471). Conclusion : The UPR measurement method confirmed that UPR was correlated with subsidence. Particularly when the sum of pUPR is ${\geq}38%$, the possibility of subsidence increased.

Soft sensor design based on PLS with hybrid inner model (내적 조합 모델 PLS를 이용한 소프트 센서 설계)

  • Hong Sun Ju;Han Chong Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.49-53
    • /
    • 1998
  • It takes quite a long time for an analyzer, such as gas chromatography, to measure a bulk property of a system, which prevents on-line measurements. Also, the cost of installation and maintenance is very high. Consequently, some other means is needed for on-line measurements of properties and the development of soft sensors based on process variables like temperature and pressure is of great interest. In the field of gas industry, the development of a soft sensor which makes indirect on-line measurements of gas compositions and flow rate, is in progress. In this paper, we proposed a hybrid inner model PLS which improved the prediction performance by taking into account the data structure, as an empirical modeling algorithm. When applied to a design of a soft sensor of a distillation tower, the hybrid inner model PLS showed better prediction performance than other methods.

  • PDF

Development of EEG Signals Measurement and Analysis Method based on Timbre (음색 기반 뇌파측정 및 분석기법 개발)

  • Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • Cultural Content Technology(CT, Culture Technology) for the development of cultural industry and the commercialization of technology, cultural contents, media, mount, pass the value chain process and increase the added value of cultural products that are good for all forms of intangible technology. In the field of Culture Technology, Music by analyzing the characteristics of the development of a variety of applications has been studied. Associated with EEG measures and the results of their research in response to musical stimuli are used to detect and study is getting attention. In this paper, the musical stimuli in EEG signals by amplifying the corresponding reaction to the averaging method, ERP (Event-Related Potentials) experiments based on the process of extracting sound methods for removing noise from the ICA algorithm to extract the tone and noise removal according to the results are applied to analyze the characteristics of EEG.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

A Study on Securing the Quality of Trusted Digital Records as Evidence: Focusing on Analysis of Quality Concept and Requirements for Records and Evidence Respectively Covered in Records Management and Judicial Domain (증거로서 신뢰할 수 있는 전자기록의 품질 확보방안 연구 - 기록관리영역과 사법영역에서 다루는 기록과 증거의 품질 개념과 요건 분석을 중심으로 -)

  • Lee, Gemma;Oh, Kyung-Mook
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.3
    • /
    • pp.217-246
    • /
    • 2021
  • This study aimed to analyze the quality concepts and requirements of digital records as evidence and to find an implication to develop requirements for trusted digital records with securing authoritative qualities. To this end, this study compared requirements of records domain linking records process, records metadata and records systems with judicial domain on digital evidence, and identified the records requirements to secure the legal admissibility linking records and judicial domain. This study analyzed the relationship of quality concepts between digital records and digital evidence, found the legal admissibility is highly related to the reliability, and derived that it needs the measure to secure the reliability at the stage of records creation and capture. To prove authenticity of digital evidence, this study identified importance of records process, records metadata and records system, and proposed the necessity of measurement to secure records' evidence.

The Thickness of Recrystallization Layer and Mechanical Properties According to Extrusion Exit Temperature (압출 출구 온도에 따른 Al 6061 합금의 표면 재결정층 두께 변화 및 기계적 특성 변화)

  • Kim, S.B.;Park, T.H.;Kim, H.G.;Lee, S.M.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.219-225
    • /
    • 2021
  • When extruding Al6061 alloys, deformation energy is deposited inside the extruded alloy depending on the deformation and the temperature of extrusion. This creates a Peripheral Coarse Grain (PCG) on the surface, where relatively more deformation energy. of the extruded alloy has been accumulated. Furthermore, since the deformation of materials continues while the materials recrystallize, it is important to examine the effect of deformation energy on dynamic recrystallization in the process of extruding Al alloys along with their microstructure. Prior studies explain the theory behind PCG growth though quantitative analysis on PCG growth of Al alloys during extrusion processes has not yet been addressed. This study aims to measure the generated PCG thickness which determines the correlation between extrusion outlet temperature and its effect on mechanical properties. Surface structure observations were performed using Optical Microscope (OM) and mechanical properties were evaluated through tensile strength and hardness measurement. Throughout this study, we endevoured to find the optimum condition of extrusion exit temperature of Al6061 and confirmed improved d reliability. This study describes the effect of the complex process variables such as exit temperature on the thickness of PCG layer for the Al6061 alloy using the 200 tons extrusion press. We therefore, discovered that the PCG layer thickness was 117 ㎛ at temperatures between 460 ℃ to 520 ℃.