• 제목/요약/키워드: process gas flow

검색결과 1,121건 처리시간 0.027초

솔레노이드 가스 인젝터의 유량제어와 천연가스엔진에서의 응용 (Flow Control of a Solenoid Gas Injector and Its Application on a Natural Gas Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.83-89
    • /
    • 2009
  • An air-fuel ratio control is essential in reducing hazardous exhaust emissions from a compressed natural gas(CNG) engine, and can be accomplished by accurate control of gas injection flow. In this study, theoretical research was conducted on injection characteristics of a solenoid gas injector, and injection experiments for calibration and analysis were performed. Various factors for gas injection flow such as injection pressure, gas temperature, and supply voltage are studied. A dynamic flow equation of the natural gas was proposed on the basis of flow dynamics theories and results of the injection experiment. The verification of the dynamic flow equation of the solenoid injector was carried out with a large CNG-engine applied to an urban bus. Air-fuel ratio control experiments were conducted in both steady and transient state. Results of injection experiments for the solenoid injector and the CNG-engine was proved the control method proposed herein to be effective.

  • PDF

진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구 (Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process)

  • 박형권;권주혁;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

TVD기법을 이용한 가스 분무 공정의 유동장 해석 (Numerical analysis of a flow field in gas atomization process using a TVD scheme)

  • 심은보
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

Air-Water 모델에서 액상의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Liquid Phase in Air-Water Model)

  • 오율권;서동표;박설현
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2004
  • In the present study, the gas injection system based on air-water model was designed to investigate the flow characteristics of liquid phase. A PIV system was applied to analyze the flow pattern in a ladle which gas stated to rise upward from the bottom. Gas flow is one of most important factors which could feature a flow pattern in a gas injection system. As the gas injected into the liquid, the kinetic energy of bubble transfer to liquid phase and a strong circulation flow develops in the liquid phase. Such a flow in the liquid develops vortex and improve the mixing process. Due to the centrifugal force, circulation flow was well developed near both wall sides and upper region respectively. Increasing gas flow was helpful to remove dead zone but, weak flow zone still exists in spite of the increasement of gas flow rate.

연소 배출가스의 유입방식에 따른 백필터를 활용한 흡착/촉매 통합공정 시스템 반응기 내 유동특성 (Flow Characteristics with Inflow-Duct Types in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters)

  • 최청렬
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.425-434
    • /
    • 2007
  • An integrated adsorption/catalytic process has been considered to treat dioxin and $NO_x$ simultaneously. The process consists of a cyclone and a reactor with nine bag filters. In this study, numerical analysis has been performed to understand flow characteristics with inflow-duct types in the reactor. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution and distribution of activated carbon have been obtained from the numerical analysis. Also trace length and residence time of flue gas, residence time of activated carbon particles have been calculated directly. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The flow characteristics in the reactor were strongly influenced by inflow-duct types. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

LNG 고압펌프 운전유량 조절에 따른 공정운영 개선방안 연구 (A study on the improvement of process operation through the adjustment to the flow rate of LNG HP pump)

  • 김동혁;이정환;김호연;백영순
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.15-22
    • /
    • 2004
  • 본 연구는 LNG 기지 내 주요 프로세스 설비인 LNG 고압펌프의 운전유량 및 토출압력을 조절함으로서 공정운영 조건을 개선하기 위해 수행되었다. 공정 해석 시뮬레이터인 ASPEN PLUS를 사용한 고압펌프의 실제 운전 성능분석 및 천연가스 송출부하 분석을 통하여 계절별 적정 LNG 고압펌프 토출유량을 결정하였고 그 결과는 현장운전에 적용되었다. 이로 인하여 고압펌프 소모 전력비용을 낮출 수 있으며, LNG기지 내 운영 프로세스 압력을 감소 시켜 보다 안전적인 기지운영을 유도할 수 있었다.

  • PDF

백필터를 활용한 흡착/촉매 통합공정 시스템의 반응기 내 유동특성 및 체류시간에 대한 수치해석적 연구 (Numerical Analysis on Flow Characteristics in the Reactor of an Integrated Adsorption/Catalysis Process with Bag Filters)

  • 최청렬;구윤서
    • 한국대기환경학회지
    • /
    • 제23권2호
    • /
    • pp.203-213
    • /
    • 2007
  • Numerical analysis has been performed to understand flow characteristics in the reactor with bag filters in an integrated adsorption/catalytic process which can treat dioxin and $NO_{x}$ together. Computational fluid dynamics technique was employed with Euler-Lagrangian model to consider flue gas and activated carbon particles simultaneously, so that residence time of flue gas and activated carbon particle could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle's size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas and activated carbon particles, and distribution of activated carbon have been obtained from the numerical analysis. Flow patterns of flue gas and activated carbon particles in the reactor were very complicated and they moved along very various paths. Therefore, their residence time in the reactor was also various. The results obtained would be effectively used to estimate the removal efficiency in the reactor once the residence time is combined with the reaction equation.

300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사 (The Process Simulation of Entrained Flow Coal Gasification in Dynamic State for 300MW IGCC)

  • 김미영;주용진;최인규;이중원
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.460-469
    • /
    • 2010
  • To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.