• Title/Summary/Keyword: process damage

Search Result 2,747, Processing Time 0.026 seconds

Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 유지관리를 위한 추계학적 확률모형)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1007-1015
    • /
    • 2013
  • A stochastic probability model based on the non-homogeneous Poisson process is represented that can correctly analyze the time-dependent linear and nonlinear behaviors of total damage over the occurrence process of loads. Introducing several types of damage intensity functions, the probability of failure and the total damage with respect to mean time to failure has been investigated in detail. Taking particularly the limit state to be the random variables followed with a distribution function, the uncertainty of that would be taken into consideration in this paper. In addition, the stochastic probability model has been straightforwardly applied to the rubble-mound breakwaters with the definition of damage level about the erosion of armor units. The probability of failure and the nonlinear total damage with respect to mean time to failure has been analyzed with the damage intensity functions for armor units estimated by fitting the expected total damage to the experimental datum. Based on the present results from the stochastic probability model, the preventive management for the armor units of the rubble-mound breakwaters would be suggested to make a decision on the repairing time and the minimum amounts repaired quantitatively.

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading (공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가)

  • Roh, Jeong-U;Baek, Un-Gyeong;Roh, Jae-Seung;Nam, Gibeop
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.390-394
    • /
    • 2020
  • The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

Conceptual Design of a Hazard Evaluation Process for Constructing the Korean Hazard Information System : Focused on Flood Hazard (한국형 재해정보시스템 구축을 위한 재해평가 프로세스 개념설계 : 홍수재해를 중심으로)

  • Jeong, Keun-Chae
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.365-377
    • /
    • 2008
  • In this paper, for constructing the Korean Hazard Information System (KHIS), we conceptually design a hazard evaluation process. We first deal with a hazard evaluation process focused on flood hazard to give the most immense damage and loss. The hazard evaluation process is consist of a damage evaluation process and a loss evaluation process, and is used for transforming hazards from natural disasters into economic measures. The proposed process is developed based on the famous FEMA (Federal Emergency Management Agency)'s $HAZAS^{@MH}$methodology. We modify the FEMA's process to be mutually exclusive and collectively exhaustive, that is all losses from the hazards are included into the estimation process but the losses are not duplicated in the process. In addition to this, we define the loss process specifically by considering the characteristics from the hazard environments of Korea. We can expect that KHIS for evaluating economic losses from natural hazards can be developed based on the conceptual design for the economic loss evaluation process, and KHIS can be used as a useful tool for analyzing the feasibilities of mitigation plans in central/local governments.

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

Low Temperature Dyeing Process by Intercellular diffusion through Cell Membrane Complex Modification of Wool. - Technology based on CSIRO and ICI (양모의 저온 염색 소개 - Sirolan LTD Process from ICI)

  • 윤일남
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2001.11a
    • /
    • pp.3-11
    • /
    • 2001
  • Fundamental studies at the CSIRO division of Wool technology and ICI on the diffusion of dyes into wool〔1,2〕have let to development of a new approach to wool dyeing. In this method, the cell membrane complex of wool is modified before dyeing by treatment under mildly alkaline conditions with a special chemicals. Wool pretreated with ethoxylated quaternary ammonium salt has an increased rate of dyebath exhaustion and dye penetration early in the dyeing cycle. This enables the treated material to be dyed below the boil for a similar time to the conventional cycle. This technique can be used on untreated and shrinkresist-treated wool and wool/nylon blends. In addition to good macro-levelness and excellent coverage of tippiness, the low temperature dyeing process give higher exhaustion levels of dyestuffs and insect-resist agent and hence cleaner effluent liquors, compared with conventional dyeing process. Low Temperature Dyeing process cause significantly less fiber damage than conventional way. The reduction in damage is reflected in improved processing performance of the dyed wool.

  • PDF

How Environmental Agents Influence the Aging Process

  • Karol, Meryl H.
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.113-124
    • /
    • 2009
  • Aging is a multifaceted biological process that affects all organs and organ systems of the body. This review provides an up-to-date analysis of this highly exciting, rapidly changing field of science. The aging process is largely under genetic control but is highly responsive to diverse environmental influences. The genes that control aging are those that are involved with cell maintenance, cell damage and repair. The environmental factors that accelerate aging are those that influence either damage of cellular macromolecules, or interfere with their repair. Prominent among these are chronic inflammation, chronic infection, some metallic chemicals, ultraviolet light, and others that heighten oxidative stress. Other environment factors slow the aging process. Included among these agents are resveratrol and vitamin D. In addition, dietary restriction and exercise have been found to extend human lifespan. The various mechanisms whereby all these agents exert their influence on aging include epigenetic modification, chromatin maintenance, protection of telomeres, and anti-oxidant defense, among others. The complex process of aging remains under continued, intense investigation.

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin;Ogorzalek, Kenneth A.;Dyke, Shirley J.;Song, Wei
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.

Damage detection using both energy and displacement damage index on the ASCE benchmark problem

  • Khosraviani, Mohammad Javad;Bahar, Omid;Ghasemi, Seyed Hooman
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.151-165
    • /
    • 2021
  • This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six-story steel building structure with single and multiple damage cases.