• Title/Summary/Keyword: process control techniques

Search Result 601, Processing Time 0.039 seconds

Statistical Process Control of Stochastic Network for the evaluation of six sigma Level (확률적 네트워크의 통계적 공정관리와 6$\sigma$)

  • 박기주
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • There are many statistical evaluation methods, A more technical Perspective is needed in estimating the effect of the Manufacturing Process for improving the Productivity, Process network analysis is a technique which has the potentiality for a wire use to improve the manufacturing process which other techniques can't be used to analyze effectively. The concept of six sigma plan was developed and pursued by Motorola to improve the process control. The goals of six sigma plan are established on the foundation of customer satisfaction such as Quality, Cost Delivery and Service This paper presents how to improve the manufacturing process by statistical process control for the evaluation of six sigma level.

  • PDF

A Study on NOx Emission Control Methods in the Cement Firing Process Using Data Mining Techniques (데이터 마이닝을 이용한 시멘트 소성공정 질소산화물(NOx)배출 관리 방법에 관한 연구)

  • Park, Chul Hong;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.739-752
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the relationship between kiln processing parameters and NOx emissions that occur in the sintering and calcination steps of the cement manufacturing process and to derive the main factors responsible for producing emissions outside emission limit criteria, as determined by category models and classification rules, using data mining techniques. The results from this study are expected to be useful as guidelines for NOx emission control standards. Methods: Data were collected from Precalciner Kiln No.3 used in one of the domestic cement plants in Korea. Thirty-four independent variables affecting NOx generation and dependent variables that exceeded or were below the NOx emiision limit (>1 and <0, respectively) were examined during kiln processing. These data were used to construct a detection model of NOx emission, in which emissions exceeded or were below the set limits. The model was validated using SPSS MODELER 18.0, artificial neural network, decision treee (C5.0), and logistic regression analysis data mining techniques. Results: The decision tree (C5.0) algorithm best represented NOx emission behavior and was used to identify 10 processing variables that resulted in NOx emissions outside limit criteria. Conclusion: The results of this study indicate that the decision tree (C5.0) can be applied for real-time monitoring and management of NOx emissions during the cement firing process to satisfy NOx emission control standards and to provide for a more eco-friendly cement product.

Modern vistas of process control

  • Georgakis, Christos
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.18-18
    • /
    • 1996
  • This paper reviews some of the most prominent and promising areas of chemical process control both in relations to batch and continuous processes. These areas include the modeling, optimization, control and monitoring of chemical processes and entire plants. Most of these areas explicitly utilize a model of the process. For this purpose the types of models used are examined in some detail. These types of models are categorized in knowledge-driven and datadriven classes. In the areas of modeling and optimization, attention is paid to batch reactors using the Tendency Modeling approach. These Tendency models consist of data- and knowledge-driven components and are often called Gray or Hybrid models. In the case of continuous processes, emphasis is placed in the closed-loop identification of a state space model and their use in Model Predictive Control nonlinear processes, such as the Fluidized Catalytic Cracking process. The effective monitoring of multivariate process is examined through the use of statistical charts obtained by the use of Principal Component Analysis (PMC). Static and dynamic charts account for the cross and auto-correlation of the substantial number of variables measured on-line. Centralized and de-centralized chart also aim in isolating the source of process disturbances so that they can be eliminated. Even though significant progress has been made during the last decade, the challenges for the next ten years are substantial. Present progress is strongly influenced by the economical benefits industry is deriving from the use of these advanced techniques. Future progress will be further catalyzed from the harmonious collaboration of University and Industrial researchers.

  • PDF

Identification Process Variables and Process Improvement Using Data Mining (데이터마이닝을 이용한 공정변수 확인 및 공정개선)

  • Jeong, Young-Soo;Gang, Chang-Uk;Byeon, Seong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • With development of the database, there are too many data on process variables and the manufacturing process for the traditional statistical process control methods to identify the process variables related with assignable causes. Data mining is useful in this situation and provides variety of approaches for improving the process. In this paper, we applied control charts to monitor the process and if assignable causes are detected, then we applied the SVM technique and the sequence pattern analysis to find out the process variables suspected. These techniques made possible to predict the behavior of process variables. We illustrated our proposed methods with real manufacturing process data.

Comparative Analysis of Best Available Techniques Reference Documents on the Fertilizer Manufacture between Korea and European Union (비료제조업의 국내와 EU 최적가용기법 기준서 비교·분석)

  • Seo, Kyungae;Kim, Gahee;Kim, Eunseok;Seok, Heejeong;Shin, Sujeong;Kim, Younglan;Kang, Philgoo
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.307-318
    • /
    • 2020
  • The integrated permit system is applied to class 1 and 2 atmospheric and water pollutant discharge facilities in 19 sectors. The fertilizer sector should receive a permit for a period of four years, from 2019 to 2023. The purpose of this study is to investigate the differences between the Korean Best Available Techniques (BAT) reference document (K-BREF) and the European Union BAT reference document (EU-BREF) in terms of the process and emission characteristics of fertilizer manufacture. K-BREF is written by focusing on products, whereas EU-BREF is produced on focusing on manufacture process. There are five types of BATs(best available techniques economically achievable) in Korea. These BATs selected mainly to recover and reuse raw meterials and save energy. The number of BATs and BAT-AELs(BAT associated emission level) in K-BREF is smaller than that in EU-BREF. We suggest that BATs and those environmental management parameters in Korea need to further reflect the emission characteristics in the fertilizer sector.

An analysis of the gyro random process (자이로 랜덤 프로세스의 분석)

  • 고영웅;김경주;이재철;권태무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.210-212
    • /
    • 1996
  • Random drift rate (i.e., random drift in angle rate) of a gyro represents the major error source of inertial navigation systems that are required to operate over long time intervals. It is uncorrectable and leads to an increase in the error with the passage of time. In this paper a technique is presented for analyzing random process from experimental data and the results are presented. The problem of estimating the a priori statistics of a random process is considered using time averages of experimental data. Time averages are calculated and used in the optimal data-processing techniques to determine the statistics of the random process. Therefore the contribution each component to the gyro drift process can be quantitatively measured by its statistics. The above techniques will be applied to actual gyro drift rate data with satisfactory results.

  • PDF

Adaptive Multitorch Multipass SAW

  • Moon, H.S.;Beattie, R.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This paper describes several advances in sensor and process control techniques for applications in Submerged Arc Welding (SAW), which combine to give a fully automatic system capable of controlling and adapting the overall welding process. This technology has been applied in longitudinal and spiral pipe mills and in pressure vessel production.

  • PDF

Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm (다변량 SPC와 자기회귀알고리즘의 연계를 위한 조사연구)

  • Jung, Hae-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.675-693
    • /
    • 2011
  • We compare three Techniques control systems with The Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm. We also investigate Autoregressed Algorithm with relevant EWMA, CUSUM, Shewhart chart, Precontrol chart and Process Capacity.

  • PDF

Fault detection of the controller based on multiprocessor (다중 프로세서를 이용한 제어기에서의 자체고장탐지)

  • 신영달;김지홍;정명진;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.426-430
    • /
    • 1987
  • The reliability is the critical issue in many computer applications, particularly in process control system. In this paper we describe how to achieve the reliability improvement in controller system based multiprocessor. The proposed method is accomplished by using the techniques of fault detection, fault isolation, safe action, and fault diagnosis.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.