• Title/Summary/Keyword: process cheese

Search Result 73, Processing Time 0.026 seconds

Utilization of Cheese Whey for Alcohol Fermentation Medium (Alcohol Fermentation을 위한 배지로서의 Cheese Whey의 이용)

  • Kim, Sang-Pil;Park, Hee-Kyung;Kim, Do-Hwan;Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.878-884
    • /
    • 1995
  • In order to use whey lactose in alcohol fermentation, we investigated fermentation conditions of Saccharomyces cerevisiae and Kluyveromyces fragilis in lactose-hydrolyzed whey with ${\beta}-D-galactosidase$. and optimum conditions of the above two yeasts through oxygen regulation by Pasteur effect which is the characteristic of the yeasts were determined. In addition, optimum condition for application of fermented whey in Tak-ju process was also examined. With 0.7% ${\beta}-D-galactosidase$, 93% lactose was hydrolyzed at pH 6.5 in 30 minutes. Because S. cerevisiae is unable to ferment galactose, the production of ethanol by S. cerevisiae was lower than that of K. fragilis in lactose-hydrolyzed whey. But ethanol productivity by S. cerevisiae was higher than that by K. fragilis in glucose added whey. In fermentation with oxygen regulation and addition of 60 g/l glucose, the ethanol productivity of K. fragilis and S. cerevisiae were 18.9 g/l (11.8% increase) and 43.5 g/l (22.1% increase), respectively. It appeared that the ethanol productivity of S. cerevisiae was higher than thst of K. fragilis under the above conditions. In ethanol fermentation added rice starch, Aspegillus oryzae hydrolyzed 80% of starch in 60 hours, and the production of ethanol was 80.2 g/l

  • PDF

Production of Functional Whey Protein Concentrate by Monitoring the Process of Ultrafilteration

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.433-438
    • /
    • 2005
  • This investigation was undertaken in order to elicit the relationship between the extent of ultrafiltration processing of whey and its effect on composition and yield of resultant whey protein concentrate (WPC). Cheddar cheese whey was fractionated through ultrafiltration to an extent of 70, 80, 90, 95, 97.5% and 97.5% volume reduction followed by I stage and II stage diafiltration. After each level of ultrafiltration, the composition of WPC was monitored. Similarly, the initial whey was adjusted to 3.0, 6.2 and 7.0 pH levels and ultrafiltration was carried out to elicit the effect of pH of ultrafiltration on the composition. Further, initial whey was adjusted to different levels of whey protein content ranging from 0.5 to 1.0 per cent and subjected to ultrafiltration to different levels. The various range of retentate obtained were further condensed and spray dried in order to assess the yield of WPC per unit volume of whey used and the quantity of whey required to produce unit weight of product. With the progress of ultrafiltration, there was a progressive increase in protein content and decrease in lactose and ash content. The regression study led to good relationships with $R^2$ values of more than 0.95 between the extents of permeate removed and the resultant changes in composition of each of the constituents. Whey processed at pH 3.0 had significantly a very low ash content and high protein content as compared to processing at 6.2 and 7.0. The yield of WPC per unit volume of whey varied significantly with the initial protein content. Higher initial protein content led to higher yield of all ranges of WPC and the quantity of whey required per unit weight of spray dried WPC significantly reduced. Regression equations establishing the relationship between initial protein content of whey and the yield of various types of WPC have been derived with very high $R^2$ values of 0.99. This study revealed that, the yield and composition of whey can be monitored strictly by controlling the processing parameters and WPC can be produced depending on the food formulation requirement.

Rapid Detection Methods for Biogenic Amines in Foods (식품 내 바이오제닉아민 신속검출기술 개발 동향)

  • Lee, Jae-Ick;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Biogenic amines have been used as chemical indicators to estimate bacterial spoilage of foods, particularly fish and fish products, cheese, and fermented foods. So far many chromatography methods have been developed to detect biogenic amines in foods. Although these instrumental analyses exhibit good sensitivity, they cannot be used as rapid detection methods due to the chemical treatment of the samples and the time-consuming process involved. For the rapid and simple detection of biogenic amines, enzyme linked immunosorbent assay kits are commercially available. In addition, analytical systems with enzyme-based amperometric biosensor detection have been increasingly developed. The biosensors used to detect the biogenic amines are based on the action of either amine oxidases or amine dehydrogenases that catalyzes the oxidative deamination of biogenic amines to the corresponding aldehydes and ammonia. This review mainly focused on the principle, development, and applications of the detection methods for rapid detection of biogenic amines in foods.

A Study on the Service Marketing Analysis and Development Plan (유가공 업체의 서비스 마케팅 차원의 분석과 발전 방안에 관한 연구)

  • park, jinho
    • Journal of Service Research and Studies
    • /
    • v.9 no.1
    • /
    • pp.33-49
    • /
    • 2019
  • In this study, we achieve an increase in sales of dairy companies through innovation in the distribution process of developing core competencies through product differentiation in the domestic dairy companies, creating new consumption pioneered new markets. First of all, improving the quality of milk in the premium milk market can be able to expect the activation of consumption and through promotion activities by the Korean wave can lead to create new consumption pioneered the market diversification at the same time export varieties of white milk and jersey species take advantage of a variety of milk in addition to drink beauty and cooking areas while lowering manufacturing costs through the introduction of the cheese will increase the revenue of the dairy companies and dairy consumption expected to activate at the same time. It is necessary to change cultivars in order to think about nutritional value and flavor, and further environment, and high quality premium milk will become a new trend in the future. Furthermore, promoting the benefits of milk consumption would contribute in raising the milk demand that is negatively correlated with increasing age.

Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2 (Bacillus sp. N2 유래 leucine aminopeptidase의 가수분해활성에 대한 NaCl의 영향)

  • Chung, Dong-Min;Lee, Gang-Deog;Chun, Sung-Sick;Chung, Young-Chul;Chun, Hyo-Kon
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.761-765
    • /
    • 2011
  • Salt stability of enzymes is a crucial practical factor in the food industry. Previously, leucine aminopeptidase (LAP) was purified from Bacillus sp. N2. Here, we present the salt effect of LAP using synthetic substrates. LAP had a hydrolytic activity for L-leucine-${\rho}$-nitroanilide in high concentrations of NaCl (up to 4 M), but not for other neutral salts (LiBr, LiCl, NaBr, KBr, and KCl). It hydrolyzed various synthetic di-peptide substrates with hydrophobic and hydrophilic amino acids at the C-terminal Xaa region, in the presence of 0-4 M NaCl. The result indicated that the hydrolytic action of LAP is not dependent on the hydrophobicity of the amino acid side chain at the scissile bond of the substrate. Remarkably, the hydrolytic activity of LAP was 1-3 folds higher than those of other LAPs and aminopeptidases in 4.5 M NaCl, suggesting that NaCl-tolerant LAP might be used in the food industry as cheese and anchovy sauce.

HFACS-K: A Method for Analyzing Human Error-Related Accidents in Manufacturing Systems: Development and Case Study (제조업의 인적오류 관련 사고분석을 위한 HFACS-K의 개발 및 사례연구)

  • Lim, Jae Geun;Choi, Joung Dock;Kang, Tae Won;Kim, Byung Chul;Ham, Dong-Han
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.64-73
    • /
    • 2020
  • As Korean government and safety-related organizations make continuous efforts to reduce the number of industrial accidents, accident rate has steadily declined since 2010, thereby recording 0.48% in 2017. However, the number of fatalities due to industrial accidents was 1,987 in 2017, which means that more efforts should be made to reduce the number of industrial accidents. As an essential activity for enhancing the system safety, accident analysis can be effectively used for reducing the number of industrial accidents. Accident analysis aims to understand the process of an accident scenario and to identify the plausible causes of the accident. Accident analysis offers useful information for developing measures for preventing the recurrence of an accident or its similar accidents. However, it seems that the current practice of accident analysis in Korean manufacturing companies takes a simplistic accident model, which is based on a linear and deterministic cause-effect relation. Considering the actual complexities underlying accidents, this would be problematic; it could be more significant in the case of human error-related accidents. Accordingly, it is necessary to use a more elaborated accident model for addressing the complexity and nature of human-error related accidents more systematically. Regarding this, HFACS(Human Factors Analysis and Classification System) can be a viable accident analysis method. It is based on the Swiss cheese model and offers a range of causal factors of a human error-related accident, some of which can be judged as the plausible causes of an accident. HFACS has been widely used in several work domains(e.g. aviation and rail industry) and can be effectively used in Korean industries. However, as HFACS was originally developed in aviation industry, the taxonomy of causal factors may not be easily applied to accidents in Korean industries, particularly manufacturing companies. In addition, the typical characteristics of Korean industries need to be reflected as well. With this issue in mind, we developed HFACS-K as a method for analyzing accidents happening in Korean industries. This paper reports the process of developing HFACS-K, the structure and contents of HFACS-K, and a case study for demonstrating its usefulness.

Process Optimization for Processing of Oyster Crassostrea gigas Gratin with Cream Sauce (크림 굴(Crassostrea gigas) 그라탕의 제조공정 최적화)

  • Lee, Chang Yong;Kim, Ye Youl;Sohn, Suk Kyung;Lee, Seok Min;Oh, Seon Hwa;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.102-110
    • /
    • 2022
  • This study was conducted to optimize the processing process for the oyster Crassostrea gigas gratin with cream sauce (OG-CS). The optimum concentration of added milk for oyster extract with milk (OE-M) was 35.0% based on the frozen-boiled oyster (F-BO), as suggested by the results of sensory evaluation. Response surface methodology was performed with whipping cream (WC)/[OE-M+mixed powder (garlic powder:onion powder=1:1) (MP)] (X1) and OE-M/MP (X2) as independent variables and viscosity (Y1), amino acid nitrogen (Y2), and overall acceptance for sensory evaluation (Y3) as dependent variables. The optimal proportions were 74.55% of WC, 20.25% of OE-M, and 5.2% of MP, and the predicted multiple response optimal values for the dependent variables were 3,735.6 cP of Y1, 197.0 mg/100 g of Y2, and 6.2 score of Y3. Under optimal conditions, the experimental values for Y1, Y2, and Y3 were 3,711.9±30.0 cP, 198.1±1.9 mg/100 g, and 6.3±0.5 score, respectively, which were not significantly different from the predicted values (P>0.05). Further, the results of sensory evaluation suggested that the optimum concentration of macaroni:cheese (1:2) to be 46.2% based on the F-BO. The OG-CS prepared under these optimal conditions was superior to the commercial seafood gratin in overall acceptance.

GABA Productivity in Yoghurt Fermented by Freeze Dried Culture Preparations of Lactobacillus acidophilus RMK567 (Lactobacillus acidophilus RMK567의 동결건조 컬쳐로 제조한 요구르트에서 GABA 생성력)

  • Lim, Sang-Dong;Yoo, Sung-Ho;Yang, Hae-Dong;Kim, Sang-Ki;Park, Seung-Yong
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • ${\gamma}-Aminobutyric$ acid (GABA) producing lactic acid bacteria, Lactobacillus acidophilus RMK567 was cultivated in 50 L of sterilized MRS broth using a fermenter at $40^{\circ}C$ for 24 h. The cell number was increased to $10.04{\pm}0.13$ Log CFU/mL with a growth rate constant (k) of 0.454 generation/h and a generation time (g) of 2.303 h after a lapse of a lag phase (L) of 5.16 h. A total of 487 g of cell paste with 40.5% moisture was harvested with viable cell number of 12.48 Log CFU/g cell paste. The cell pastes after preparation with glycerol, glucose, and polydextrose as cryo-protectants were lyophilized under a vacuum of 84 m torr. A total of 408 g of freeze dried (FD) cell powders were mixed with a commercial strain of Streptococcus thermophilus to prepare of three types FD starter cultures with the viable cell numbers of 12.42 (FDA-GY), 12.60 (FDBGG) and 12.91 (FDC-GP) Log CFU/g. During preservation the FD cultures at -$18^{\circ}C$, the cell viability of the FD starter cultures were rapidly dropped to below 3.24% of the day of storage. No significant difference was found in the cell viabilities among three types of FD starters cultures, but significant difference (p<0.01) was found in storage periods. Yoghurts fermented through FD starter culture of L. acidophilus RMK567 were determined to contain $155.16{\pm}8.53$ ppm, $243.82{\pm}4.27$ ppm, and $198.64{\pm}23.46$ ppm of GABA, respectively. This study shows that GABA production activity of L. acidophilus RMK567 is not affected during the freeze drying process and would be available for commercial production of yoghurt containing high GABA content.

Historical Investigation on Development of Produce and Packages or Physical Analysis of Packaging's Materials of Cheese in Korea since 1967-2 (1967년 이후 한국(韓國)에서 치즈제품(製品)의 개발(開發)과 포장(包裝)의 변화(變化) 및 그 포장재(包裝材)의 생물학적(生物學的) 조사연구(調査硏究)-2)

  • Kim, Duck-Woong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • Physical analysis of some composite films of outer packaging at process cheeses in Korea is as following. In comparison with four composite films, tensile strength is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;MD9.55kg/15mm,\;TD8.95kg/15mm>79.3{\mu}PET/PVDC/L-LDPE\;film\;MD5.37kg/15mm,\;TD5.01kg/15mm>96.9{\mu}PE/PVDC/PE\;film\;MD5.42kg/15mm,\;TD4.73kg/15mm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;MD4.65kg/15mm,\;TD4.22kg/15mm$. Water vapor transmission is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;0.41g/m^2{\cdot}24hr>79.3{\mu}PET/PVDC/L-LDPE\;film\;3.77g/m^2{\cdot}24hr>96.9{\mu}PE/PVDC/PE\;film\;3.81g/m^2{\cdot}24hr>61.6{\mu}PVDC/PE/AL-vac/4.91g/m^2{\cdot}24hr$. Gas transmission $O_2:N_2:CO_2$ is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;1.81:0.74:4.2cc/m^2{\cdot}24hr{\cdot}atm>79.3{\mu}PET/PVDC/L-LDPE\;film\;13.4:6.4:34.2cc/m^2{\cdot}24hr{\cdot}atm>96.9{\mu}PE/PVDC/PE\;film\;15.3:7.1:42.0cc/m^2{\cdot}24hr{\cdot}atm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;25.3:12.5:59.3cc/m^2{\cdot}24hr{\cdot}atm$ each other. And for preservation this were sealed to filths $N_2,\;CO_2$ gas or defilling ai (vacuum type) in the packaging and reserved less than $10^{\circ}C$ at refrigerator.

  • PDF

A Study on the Development of Assessment Index for Catastrophic Incident Warning Sign at Refinery and Pertrochemical Plants (정유 및 석유화학플랜트 중대사고 전조신호 평가지표 개발에 관한 연구)

  • Yun, Yong Jin;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.637-651
    • /
    • 2019
  • In the event of a major accident such as an explosion in a refinery or a petrochemical plant, it has caused a serious loss of life and property and has had a great impact on the insurance market. In the case of catastrophic incidents occurring in process industries such as refinery and petrochemical plants, only the proximate causes of loss have been drawn and studied from inspectors or claims adjustors responsible for claims of property insurers, incident cause investigators, and national forensic service workers. However, it has not been done well for conducting root cause analysis (RCA) and identifying the factors that contributed to the failure and establishing preventive measures before leading to chemical plant's catastrophic incidents. In this study, the criteria of warning signs on CCPS catastrophic incident waning sign self-assessment tool which was derived through the RCA method and the contribution factor analysis method using the swiss cheese model principle has been reviewed first. Secondly, in order to determine the major incident warning signs in an actual chemical plant, 614 recommendations which have been issued during last the 17 years by loss control engineers of global reinsurers were analyzed. Finally, in order to facilitate the assessment index for catastrophic incident warning signs, the criteria for the catastrophic incident warning sign index at chemical plants were grouped by type and classified into upper category and lower category. Then, a catastrophic incident warning sign index for a chemical plant was developed using the weighted values of each category derived by applying the analytic hierarchy process (pairwise comparison method) through a questionnaire answered by relevant experts of the chemical plant. It is expected that the final 'assessment index for catastrophic incident warning signs' can be utilized by the refinery and petrochemical plant's internal as well as external auditors to assess vulnerability levels related to incident warning signs, and identify the elements of incident warning signs that need to be tracked and managed to prevent the occurrence of serious incidents in the future.