• Title/Summary/Keyword: process analysis

Search Result 34,002, Processing Time 0.063 seconds

″Issues in designing a Knowledge-based system to support process modeling″

  • Suh, Eui-Ho;Kim, Suyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.50-54
    • /
    • 2001
  • Information systems development entails planning, analysis, design and construction phases. The analysis phase identifying user requirements is the most important of these phases. Since unidentified defects in the early phase causes increased work and costs as development proceeds, the quality of analysis results affects the quality of the resultant system. Major tasks in the analysis phase are data modeling and process modeling. Research on building a knowledge-based system for data modeling have been conducted much, however, not sufficiently for process modeling. As a system environment with high user interaction increases, research on process modeling methods and knowledge- based systems considering such environment are required. In this research, a process modeling framework for information systems with high user interaction is suggested and a knowledge-based system for supporting the suggested framework is implemented. A proposed model consists of the following tasks: event analysis, process analysis, and event/process interaction analysis. Event analysis identifies business events and their responses. Process analysis break down the processes of an enterprise into progressively increasing details. Decomposition begins at the function level and ends when the elementary process level is reached. Event/process interaction analysis verifies the results of process analysis and event analysis. A knowledge-based system for supporting a proposed process modeling framework is implemented in a web-based environment.

  • PDF

An Empirical Study on Manufacturing Process Mining of Smart Factory (스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구)

  • Taesung, Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

Evaluation Method for Measurement System and Process Capability Using Gage R&R and Performance Indices (게이지 R&R과 성능지수를 이용한 측정시스템과 공정능력 평가 방법)

  • Ju, Youngdon;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.78-85
    • /
    • 2019
  • High variance observed in the measurement system can cause high process variation that can affect process capability badly. Therefore, measurement system analysis is closely related to process capability analysis. Generally, the evaluation for measurement system and process variance is performed separately in the industry. That is, the measurement system analysis is implemented before process monitoring, process capability and process performance analysis even though these analyses are closely related. This paper presents the effective concurrent evaluation procedure for measurement system analysis and process capability analysis using the table that contains Process Performance (Pp), Gage Repeatability & Reproducibility (%R&R) and Number of Distinct Categories (NDC). Furthermore, the long-term process capability index (Pp), which takes into account both gage variance and process variance, is used instead of the short-term process capability (Cp) considering only process variance. The long-term capability index can reflect well the relationship between the measurement system and process capability. The quality measurement and improvement guidelines by region scale are also described in detail. In conclusion, this research proposes the procedure that can execute the measurement system analysis and process capability analysis at the same time. The proposed procedure can contribute to reduction of the measurement staff's effort and to improvement of accurate evaluation.

Bootstrap $C_{pp}$ Multiple Process Performance Analysis Chart (붓스트랩 $C_{pp}$ 다공정 수행분석차트)

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • Pearn et al.(2002) supposed the $C_{pp}$ multiple process performance analysis chart. This chart displays multiple processes with the process variation and process departure on one single chart. But, this chart can not display the distribution of the process variation and process departure and is inappropriate for processes with non-normal distributions. With bootstrapping method, we can display the distribution of the process variation and process departure on the $C_{pp}$ multiple process performance analysis chart.

Measurement and Analysis Process Improvement Based on CMMI (CMMI 기반의 측정 및 분석 프로세스 개선)

  • Han, Hyuk-Soo;Do, Sung-Ryong
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.229-242
    • /
    • 2011
  • It is necessary to have measurement and analysis activity for managing software project. At least, every project measures time and cost in order to figure it out whether it will finish within its deadline. CMMI has Measurement and Analysis process in Maturity Level 2. In Measurement and Analysis process, Indicators for decision making in project management are defined and analysis procedure of the measurements to get the indicators are specified. Also, the way of collecting the data and storing them is also planned. Establishing efficient and effective measurement and analysis process in the organization by improving existing process is very important for project success. In this paper, we provide a method for analyzing the measurement and analysis process and improving it based on IDEAL model. It will support the organizations which are trying to adopt CMMI to establish measurement and analysis process.

A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(II) - Deformation Measurement and Deformation Analysis Model - (열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(II) - 변형 계측 및 변형 해석 모델 정립 -)

  • 장경복;정진우;강성수;최규원;박찬우;조상명
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.492-498
    • /
    • 2001
  • In the previous study, temperature monitoring of case about shrinkage fit process was performed and heat transfer model was developed in detail by feedback and tuning among monitoring result, process investigation, and analysis result. The gap element in contact between case and core was effectively used in analysis model. In present study, following things are performed to solve deformation of case due to shrinkage fit process on the basis of previous result. Above all, mechanical material properties of case are measured by case specimen for deformation analysis considering weldment of case. Deformation of case before and after shrinkage fit process is measured, too. Three dimensional deformation model is developed by the comparison and inspection between these experimental data and analysis results. Deformation analysis is simulated with the result of heat transfer analysis, in other words, non-coupled analysis is used. Finally the countermeasure for deformation is brought up through those.

  • PDF

Process operation improvement methodology based on statistical data analysis (통계적 분석기법을 이용한 공정 운전 향상의 방법)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF

Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis (유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Lee, Byung-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

Application of The Value Analysis To Redesign Facility Layout

  • Laurent, Eyheraguibel;Jeong, Byung-Ho;Lee, Chan-Gie;Lee, Sang-Young
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.167-177
    • /
    • 1997
  • This paper deals with an application of process value analysis method for a manufacturing process in order to redesign facility layout in a paper company. We have used the value analysis method which permits an overall and rigorous study of process by a functional approach. Firstly, customer's expectations for the future process are clearly and precisely expressed with specifications of the Functional Extern Analysis. The existing process is analyzed using various tool of the Functional Internal Analysis in the second part. From the results of these analysis, we find out that the main problems of current facility are due to scheduling and facility layout. This paper is devoted to resolve the second problem. We suggest an ideal solution in order to have a reference solution. Nextly, We give realistic choices and the final solution for the facility layout.

  • PDF