• Title/Summary/Keyword: procaspase-3

Search Result 82, Processing Time 0.024 seconds

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

The Effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from Lobophyyum sp. on the Apoptosis Induction of SNU-C5 Human Colorectal Cancer Cells

  • Kim, Eun-Ji;Kang, Jung Il;Tung, Nguyen-Huu;Kim, Young-Ho;Hyun, Jin Won;Koh, Young Sang;Chang, Weon-Young;Yoo, Eun Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.623-629
    • /
    • 2016
  • (1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1could result from apoptosis via the modulation of $Wnt/{\beta}$-catenin and the TGF-${\beta}$ pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of $Wnt/{\beta}$-catenin signaling pathway via the decrease of GSK-$3{\beta}$ phosphorylation followed by the decrease of ${\beta}$-catenin level. In addition, the LS-1 induced the activation of TGF-${\beta}$ signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of $Wnt/{\beta}$-catenin pathway and the activation of TGF-${\beta}$ pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.

Schedule-Dependent Effect of Epigallocatechin-3-Gallate (EGCG) with Paclitaxel on H460 Cells

  • Park, Sunghoon;Kim, Joo-Hee;Hwang, Yong Il;Jung, Ki-Suck;Jang, Young Sook;Jang, Seung Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.114-119
    • /
    • 2014
  • Background: Epigallocatechin-3-gallate (EGCG), a major biologically active component of green tea, has anti-cancer activity in human and animal models. We investigated the schedule-dependent effect of EGCG and paclitaxel on growth of NCI-H460 non-small cell lung cancer cells. Methods: To investigate the combined effect of EGCG (E) and paclitaxel (P), combination indices (CIs) were calculated, and cell cycle analysis was performed. For the effect on cell apoptosis, western blot analysis was also performed. Results: CI analysis demonstrated that both concurrent and sequential E ${\rightarrow}$ P treatments had antagonistic effects (CIs >1.0), but sequential P ${\rightarrow}$ E had synergistic effects (CIs <1.0), on the growth inhibition of NCI-H460 cells. In the cell cycle analysis, although paclitaxel induced $G_2/M$ cell cycle arrest and increased the sub-G1 fraction, concurrent EGCG and paclitaxel treatments did not have any additive or synergistic effects compared with the paclitaxel treatment alone. However, western blot analysis demonstrated that sequential P ${\rightarrow}$ E treatment decreased the expression of Bcl-2 and procaspase-3 and increased poly(ADP-ribose) polymerase (PARP) cleavage; while minimal effects were seen with concurrent or sequential E ${\rightarrow}$ P treatments. Conclusion: Concurrent or sequential E ${\rightarrow}$ P treatment had opposite effects to P ${\rightarrow}$ E treatment, where P ${\rightarrow}$ E treatment showed a synergistic effect on growth inhibition of NCI-H460 cells by inducing apoptosis. Thus, the efficacy of EGCG and paclitaxel combination treatment seems to be schedule-dependent.

Novel SIRT Inhibitor, MHY2256, Induces Cell Cycle Arrest, Apoptosis, and Autophagic Cell Death in HCT116 Human Colorectal Cancer Cells

  • Kim, Min Jeong;Kang, Young Jung;Sung, Bokyung;Jang, Jung Yoon;Ahn, Yu Ra;Oh, Hye Jin;Choi, Heejeong;Choi, Inkyu;Im, Eunok;Moon, Hyung Ryong;Chung, Hae Young;Kim, Nam Deuk
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

Protective Effect of Jinmu-tang on $H_2O_2$-induced Cell Death in C6 Glial Cells (진무탕(眞武湯)이 $H_2O_2$로 유도된 C6 Glial 세포사에 미치는 영향)

  • Choi, Jung-Hoon;Shin, Yong-Jeen;Ha, Ye-Jin;Cho, Mun-Young;You, Ju-Yeon;Lee, Soong-In;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.272-283
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the mechanism of protective effect of Jinmu-tang (JMT, Zhenwu-tang) extract on $H_2O_2$-induced cell death in C6 glial cells. Methods : Cultured C6 glial cells of white mice were pretreated with JMT extract and exposed to $H_2O_2$ for inducing cell death. We measure the cell viability by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and investigate the cell morphology using a light microscope after crystal violet (CV) staining. Reactive oxygen species (ROS) formation was analyzed using a flow cytometer and a fluorescent microscope after staining with 2'7'-dichlorofluorescein diacetate (DCF-DA). DNA fragmentation was analyzed using a flow cytometer after propidium iodide (PI) staining and nuclei morphology was investigated using a fluorescent microscope after 2-[4-amidinophenyl]-6-indo-lecarbamidine dihydrochloride (DAPI) staining. We analyzed expression of Bax, processing of procaspase-3 and poly (ADP-ribose) polymerase (PARP), and activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) by western blot method. Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) secretion was analyzed using Quantikine kit. Results : We determined the elevated cell viability by JMT extract on $H_2O_2$-induced C6 glial cell death. ROS formation, DNA fragmentation, $I{\kappa}B{\alpha}$ phosphorylation, NF-${\kappa}B$ activation, and secretion of TNF-${\alpha}$ induced by $H_2O_2$ are inhibited by JMT extract pre-treatment. JMT extract inhibits Bax expression, processing of caspase-3 and PARP that are critical biochemical markers of apoptotic cell death. Conclusions : These results suggest that JMT extract has a protective effect on $H_2O_2$-induced C6 glial cell death in various pathways.

Effect of Rheum undulatum Linne extract and Glycyrriza uralensis Fischer extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice (대황과 감초 병용의 항산화 및 간보호효과)

  • Lee, Eun Hye;Baek, Su Youn;Kim, Kwang-Youn;Lee, Seul-Gi;Kim, Sang Chan;Lee, Hyeong Sik;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.24 no.3
    • /
    • pp.163-174
    • /
    • 2016
  • Objectives : Rheum undulatum Linne and Glycyrriza uralensis Fischer are widely used herbal medicine. In this study, anti-oxidant and liver protective effects of R. undunlatum extract (RUE) and G. uralensis extract (GUE) were investigated in HepG2 cells, respectively. Oxidative stress and liver fibrosis were induced by arachidonic acid (AA) and iron, and CCl4.Methods : MTT assay was assessed for cell viability, and immunoblotting analysis was performed to detect expression of apoptosis related proteins. In addition, reactive oxygen species (ROS) and mitochondrial dysfunction were measured. In vivo, BALB/c mouse were orally administrated with the aqueous extract of 10 mg/kg RUE and 100 mg/kg GUE for 3 days and then, injected with CCl4 0.5 ml/kg body weight to induce acute liver damage. Serum ALT level was measured, and histological change was observed in Harris's hematoxylin and eosin stainResults : RUE and GUE pre-treatment increased relative cell viability in concentration dependent manner and altered the expression levels of apoptosis-related proteins such as procaspase 3, PARP and Bcl-xL. RUE and GUE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species (ROS) production induced by AA and iron. In addition, RUE and GUE activated liver kinase B1 (LKB1), by increasing phosphorylation. Moreover, RUE and GUE treatment decreased liver injuries induced by CCl4, as evidenced by decreases in histological liver damage as well as serum alanine amino transferase (ALT) level.Conclusions : These data suggest that RUE and GUE has anti-oxidant and liver protective effects against AA and iron-induced oxidative stress and CCl4-induced liver injury.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

Protective Effects of Ukgan-san in $CoCl_2$-induced Cell Death of C6 Glial Cells ($CoCl_2$로 유도된 C6 신경교세포의 사멸에 대한 억간산(抑肝散)의 보호 효과)

  • Cho, Mun-Young;Shin, Yong-Jeen;Ha, Ye-Jin;Woo, Chan;Kim, Ta-Jung;You, Ju-Yeon;Choi, Yong-Seok;Choi, Jung-Hoon;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.178-191
    • /
    • 2013
  • Objectives : In this study, we made an effort to investigate the protective mechanism of Ukgan-san (UGS) extracts on hypoxia-induced C6 glial cell death. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were analysed with microscope after staining with crystal violet (CV). Reactive oxygen species (ROS) formation was assessed by flow cytometer after staining with 2'7'-dichlorofluorescein diacetate (DCF-DA). We also analyzed expression of hypoxia-inducible factor-1 alpha (HIF-$1{\alpha}$) and p53, processing of procaspase-3 and procyclic acidic repetitive protein (PARP) by western blot method. Results : We estimated the elevated cell viability by UGS extract on $CoCl_2$-induced C6 glial cells. UGS attenuated $CoCl_2$-induced ROS formation in C6 glial cells and also showed a protective activity compared to antioxidants and exhibited abrogation of LDH-released by $CoCl_2$. UGS suppressed the typical apoptotic cell death markers, caspase-3 and PARP activation. UGS inhibited $CoCl_2$-induced HIF-1${\alpha}$ expression which is known as a major regulator for hypoxia-induced cell death, and suppressed p53 expression. Conclusions : These results suggest that UGS extract contains protective constituents for hypoxia-induced C6 glial cell death.

Apoptotic Activity of Curcumin and EF-24 in HTB-41 Human Salivary Gland Epidermoid Carcinoma Cells

  • Kim, Ji-Won;Lee, Seul Ah;Go, Dae-San;Park, Byung-Sun;Kim, Su-Gwan;Yu, Sun-Kyoung;Oh, Ji-Su;Kim, Chun Sung;Kim, Jeongsun;Park, Jong-Tae;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • Curcumin (diferuloylmethane), a constituent of turmeric powder derived from the rhizome of Curcuma longa, has been shown to inhibit the growth of various types of cancer cells by regulating cell proliferation and apoptosis. However, a need exists to design more effective analogs because of curcumin's poor intestinal absorption. EF-24 (diphenyl difluoroketone), the monoketone analog of curcumin, has shown good efficacy in anticancer screens. However, the effects of curcumin and EF-24 on salivary gland epidermoid carcinoma cells are not clearly established. The main goal of this study was to investigate the effects of curcumin and EF-24 on cell growth and induction of apoptosis in human salivary gland epidermoid carcinoma cells. Our studies showed that curcumin and EF-24 inhibited the growth of HTB-41 cells in a dose- and time-dependent manner, and the potency of EF-24 was > 34-fold that of curcumin. Treatment with curcumin or EF-24 resulted in nuclear condensation and fragmentation in HTB-41 cells, whereas the control HTB-41 cell nuclei retained their normal regular and oval shape. Curcumin and EF-24 promoted proteolytic cleavages of procaspase-3/-7/-9, resulting in an increase in the amount of cleaved caspase-3/-7/-9 in the HTB-41 cells. Caspase-3 and -7 activities were detected in viable HTB-41 cells treated with curcumin or EF-24. These results suggest that the curcumin and EF-24 inhibit cell proliferation and induce apoptosis in HTB-41 human salivary gland epidermoid carcinoma cells, and that they may have potential properties as an anti-cancer drug therapy.

Construction of Mammalian Cell Expression Vector for pAcGFP-bFLIP(L) Fusion Protein and Its Expression in Follicular Granulosa Cells

  • Yang, Run Jun;Li, Wu Feng;Li, Jun Ya;Zhang, Lu Pei;Gao, Xue;Chen, Jin Bao;Xu, Shang Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.401-409
    • /
    • 2010
  • FLICE inhibitory protein (FLIP) is one of the important anti-apoptotic proteins in the Fas/FasL apoptotic path which has death effect domains, mimicking the pro-domain of procaspase-8. To reveal the intracellular signal transduction molecules involved in the process of follicular development in the bovine ovary, we cloned the c-FLIP(L) gene in bovine ovary tissue with the reverse transcription polymerase chain reaction (RT-PCR), deleted the termination codon in its cDNA, and directionally cloned the amplified c-FLIP(L) gene into eukaryotic expression vector pAcGFP-Nl, including AcGFP, and successfully constructed the fusion protein recombinant plasmid. After identifying by restrictive enzyme BglII/EcoRI and sequencing, pAcGFP-bFLIP(L) was then transfected into follicular granulosa cells, mediated by Lipofectamine 2000, the expression of AcGFP observed and the transcription and expression of c-FLIP(L) detected by RT-PCR and Western blot. The results showed that the cattle c-FLIP(L) was successfully cloned; the pAcGFPbFLIP(L) fusion protein recombinant plasmid was successfuly constructed by introducing a BglII/EcoRI cloning site at the two ends of the c-FLIP(L) open reading frame and inserting a Kozak sequence before the start codon. AcGFP expression was detected as early as 24 h after transfection. The percentage of AcGFP positive cells reached about 65% after 24 h. A 1,483 bp transcription was amplified by RT-PCR, and a 83 kD target protein was detected by Western blot. Construction of the pAcGFP-bFLIP(L) recombinant plasmid should be helpful for further understanding the mechanism of regulation of c-FLIP(L) on bovine oocyte formation and development.