• Title/Summary/Keyword: problem recognition

Search Result 1,874, Processing Time 0.028 seconds

Mathematical Thinking and Developing Mathematical Structure

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.14 no.1
    • /
    • pp.33-50
    • /
    • 2010
  • The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.

Automatic 3D Head Pose-Normalization using 2D and 3D Interaction (자동 3차원 얼굴 포즈 정규화 기법)

  • Yu, Sun-Jin;Kim, Joong-Rock;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.211-212
    • /
    • 2007
  • Pose-variation factors present a significant problem in 2D face recognition. To solve this problem, there are various approaches for a 3D face acquisition system which was able to generate multi-view images. However, this created another pose estimation problem in terms of normalizing the 3D face data. This paper presents a 3D head pose-normalization method using 2D and 3D interaction. The proposed method uses 2D information with the AAM(Active Appearance Model) and 3D information with a 3D normal vector. In order to verify the performance of the proposed method, we designed an experiment using 2.5D face recognition. Experimental results showed that the proposed method is robust against pose variation.

  • PDF

A RAM-based Cumulative Neural Net with Adaptive Weights (적응적 가중치를 이용한 RAM 기반 누적 신경망)

  • Lee, Dong-Hyung;Kim, Seong-Jin;Gwon, Young-Chul;Lee, Soo-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.216-224
    • /
    • 2010
  • A RAM-based Neural Network(RNN) has the advantages of processing speed and hardware implementation. In spite of these advantages, it has a saturation problem, weakness of repeated learning and extract of a generalized pattern. To resolve these problems of RNN, the 3DNS model using cumulative multi discriminator was proposed. But that model does not solve the saturation problem yet. In this paper, we proposed a adaptive weight cumulative neural net(AWCNN) using the adaptive weight neuron (AWN) for solving the saturation problem. The proposed nets improved a recognition rate and the saturation problem of 3DNS. We experimented with the MNIST database of NIST without preprocessing. As a result of experimentations, the AWCNN was 1.5% higher than 3DNS in a recognition rate when all input patterns were used. The recognition rate using generalized patterns was similar to that using all input patterns.

A Resampling Method for Small Sample Size Problems in Face Recognition using LDA (LDA를 이용한 얼굴인식에서의 Small Sample Size문제 해결을 위한 Resampling 방법)

  • Oh, Jae-Hyun;Kwak, Jo-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.78-88
    • /
    • 2009
  • In many face recognition problems, the number of available images is limited compared to the dimension of the input space which is usually equal to the number of pixels. This problem is called as the 'small sample size' problem and regularization methods are typically used to solve this problem in feature extraction methods such as LDA. By using regularization methods, the modified within class matrix becomes nonsingu1ar and LDA can be performed in its original form. However, in the process of adding a scaled version of the identity matrix to the original within scatter matrix, the scale factor should be set heuristically and the performance of the recognition system depends on highly the value of the scalar factor. By using the proposed resampling method, we can generate a set of images similar to but slightly different from the original image. With the increased number of images, the small sample size problem is alleviated and the classification performance increases. Unlike regularization method, the resampling method does not suffer from the heuristic setting of the parameter producing better performance.

A Study on the Effects of ESG Entrepreneurship Education and Participatory Learning Method on Creative Problem-Solving and Social Value Recognition (ESG기업가정신교육과 참여적 학습 방식이 '창의적 문제해결' 및 '사회적 가치 인식'에 미치는 영향에 관한 연구)

  • Lee Sunyoung;Kim Seungchul
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.201-219
    • /
    • 2023
  • ESG (Environment, Social, Governance) is becoming the core of the interest of today's entrepreneurs concerning about the earth crisis. Numerous studies are going on these days about the importance of ESG, but most of them seem confined to the introductory level. This study concentrates on "ESG education" that will teach the learners how to put various ESG ideas into practice, knowing that the earth crisis would not be overcome without actual practice of those ideas. First, elementary and junior·senior high school, professors in university and educational consultants in the field designed educational programs and related content materials under "ESG entrepreneurship education" integrated with ESG and Entrepreneurship education, which have been implemented previously. Participatory learning methods are converged with the program. The researcher analyzed the learning effects in depth after implementing the programs in the education field. Thus, this study first examined the effects of key variables of ESG educational program i.e., ESG entrepreneurship education, student participatory learning, and team-based learning on creative problem-solving and social value recognition with an essential variant of ESG educational programs and identified the relations to creative problem-solving and social value recognition. Besides, this study investigated the moderating effects of school atmosphere, and teachers' enthusiasm, regarding traits of educational programs and social value recognition. Findings indicate that sub variants of the traits of educational programs i.e., ESG entrepreneurship education, student participatory learning, and team-based learning significantly affect creative problem-solving skills and social value recognition and that creative problem-solving impacts social value recognition. In addition, teachers' enthusiasm has moderating effects between traits of educational programs and social value recognition. This study provides content-program learning methods that can be practically applied in education, emphasizing practice in ESG in elementary and junior·senior high school education. Implications suggest that ESG entrepreneurship education and active participatory learning affect social value recognition and that teachers' enthusiasm plays a significant role in education.

  • PDF

Rank-level Fusion Method That Improves Recognition Rate by Using Correlation Coefficient (상관계수를 이용하여 인식률을 향상시킨 rank-level fusion 방법)

  • Ahn, Jung-ho;Jeong, Jae Yeol;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1007-1017
    • /
    • 2019
  • Currently, most biometrics system authenticates users by using single biometric information. This method has many problems such as noise problem, sensitivity to data, spoofing, a limitation of recognition rate. One method to solve this problems is to use multi biometric information. The multi biometric authentication system performs information fusion for each biometric information to generate new information, and then uses the new information to authenticate the user. Among information fusion methods, a score-level fusion method is widely used. However, there is a problem that a normalization operation is required, and even if data is same, the recognition rate varies depending on the normalization method. A rank-level fusion method that does not require normalization is proposed. However, a existing rank-level fusion methods have lower recognition rate than score-level fusion methods. To solve this problem, we propose a rank-level fusion method with higher recognition rate than a score-level fusion method using correlation coefficient. The experiment compares recognition rate of a existing rank-level fusion methods with the recognition rate of proposed method using iris information(CASIA V3) and face information(FERET V1). We also compare with score-level fusion methods. As a result, the recognition rate improve from about 0.3% to 3.3%.

Korean Speech Recognition Based on Syllable (음절을 기반으로한 한국어 음성인식)

  • Lee, Young-Ho;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.11-22
    • /
    • 1994
  • For the conventional systme based on word, it is very difficult to enlarge the number of vocabulary. To cope with this problem, we must use more fundamental units of speech. For example, syllables and phonemes are such units, Korean speech consists of initial consonants, middle vowels and final consonants and has characteristic that we can obtain syllables from speech easily. In this paper, we show a speech recognition system with the advantage of the syllable characteristics peculiar to the Korean speech. The algorithm of recognition system is the Time Delay Neural Network. To recognize many recognition units, system consists of initial consonants, middle vowels, and final consonants recognition neural network. At first, our system recognizes initial consonants, middle vowels and final consonants. Then using this results, system recognizes isolated words. Through experiments, we got 85.12% recognition rate for 2735 data of initial consonants, 86.95% recognition rate for 3110 data of middle vowels, and 90.58% recognition rate for 1615 data of final consonants. And we got 71.2% recognition rate for 250 data of isolated words.

  • PDF

Face Recognition using Emotional Face Images and Fuzzy Fisherface (감정이 있는 얼굴영상과 퍼지 Fisherface를 이용한 얼굴인식)

  • Koh, Hyun-Joo;Chun, Myung-Geun;Paliwal, K.K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.94-98
    • /
    • 2009
  • In this paper, we deal with a face recognition method for the emotional face images. Since the face recognition is one of the most natural and straightforward biometric methods, there have been various research works. However, most of them are focused on the expressionless face images and have had a very difficult problem if we consider the facial expression. In real situations, however, it is required to consider the emotional face images. Here, three basic human emotions such as happiness, sadness, and anger are investigated for the face recognition. And, this situation requires a robust face recognition algorithm then we use a fuzzy Fisher's Linear Discriminant (FLD) algorithm with the wavelet transform. The fuzzy Fisherface is a statistical method that maximizes the ratio of between-scatter matrix and within-scatter matrix and also handles the fuzzy class information. The experimental results obtained for the CBNU face databases reveal that the approach presented in this paper yields better recognition performance in comparison with the results obtained by other recognition methods.

Isolated-Word Recognition Using Neural Network and Hidden Markov Model (Neural-HMM을 이용한 고립단어 인식)

  • 김연수;김창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1199-1205
    • /
    • 1992
  • In this paper, a Korean word recognition method which usese Neural Network and Hidden Markov Models(HMM) is proposed to improve a recognition rate with a small amount of learning data. The method reduces the fluctuation due to personal differences which is a problem to a HMM recognition system. In this method, effective recognizer is designed by the complement of each recognition result of the Hidden Markov Models(HMM) and Neural Network. In order to evaluate this model, word recognition experiment is carried out for 28 cities which is DDD area names uttered by two male and a female in twenties. As a result of testing HMM with 8 state, codeword is 64, the recognition rate 91[%], as a result of testing Neural network(NN) with 64 codeword the recognition rate is 89[%]. Finally, as a result of testing NN-HMM with 64 codeword which the best condition in former tests, the recognition rate is 95[%].

  • PDF

On-line Recognition of Cursive Korean Characters Based on Hidden Markov Model and Level Building (은닉 마르코프 모델과 레벨 빌딩 알고리즘을 이용한 흘림체 한글의 온라인 인식)

  • Kim, Sang-Gyun;Kim, Gyeong-Hyeon;Lee, Jong-Guk;Lee, Jae-Uk;Kim, Hang-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1281-1293
    • /
    • 1996
  • In this paper, we propose a novel recognition model of on-line cursive Korean characters using HMM(Hidden Markov Model) and level building algorithm. The model is constructed as a form of recognition network with HMM for graphemes and Korean combination rules. Though the network is so flexible as to accomodate variability of input patterns, it has a problem of recognition speed caused by 11, 172 search paths. To settle the problem, we modify the level building algorithm to be adapted directly to the Korean combination rules and apply it to the model. The modified algorithm is efficient network search procedure time complexity of which depends on the number of HMMs for each grapheme, not the number of paths in the extensive recognition network. A test with 15, 000 hand written characters shows recognition rat 90% and speed of 0.72 second per character.

  • PDF