• Title/Summary/Keyword: problem generation

Search Result 2,354, Processing Time 0.029 seconds

Optical, Thermal property by Applied PCB Structure design (PCB 구조적 설계에 따른 LED Module의 열적 광학적 특성)

  • Lee, Seung-Min;Lee, Seong-Jin;Choi, Gi-Seung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1275-1276
    • /
    • 2006
  • As developing the information society, Lighting Emitted diode(LED) which is light source for illumination of next generation is attracted public attention. LED have many problem as narrow light view angle, high price, drift phenomenon of color coordinate, high heating problem for lower power, lower weight and small size. So, many researches have continued in a illumination as LED module type. in this problem, heating problem is very important and difficult and that is caused in decreasing phenomenon of brightness and drift phenomenon of color coordinate. so the problem of heating is urgent question for illumination of LED. In this paper, structural design of PCB changed as two type for solving the heating problem. also the properties of heating is analysed and optical properties is measured with heating image camera and spectrometer according to change in this design.

  • PDF

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Profit-based Thermal Unit Maintenance Scheduling under Price Volatility by Reactive Tabu Search

  • Sugimoto Junjiro;Yokoyama Ryuichi
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.

Optimization Algorithm for Real-time Load Dispatch Problem Using Shut-off and Swap Method (발전정지와 교환방법을 적용한 실시간급전문제 최적화 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.219-224
    • /
    • 2017
  • In facing the lack of a deterministic algorithm for economic load dispatch optimization problem, only non-deterministic heuristic algorithms have been suggested. Worse still, there is a near deficiency of research devoted to real-time load dispatch optimization algorithm. In this paper, therefore, I devise a shut-off and swap algorithm to solve real-time load dispatch optimization problem. With this algorithm in place, generators with maximum cost-per-unit generation power are to be shut off. The proposed shut-off criteria use only quadratic function in power generation cost function without valve effect nonlinear absolute function. When applied to the most prevalent economic load dispatch benchmark data, the proposed algorithm is proven to largely reduce the power cost of known algorithms.

Fault Coverage Improvement of Test Patterns for Com-binational Circuit using a Genetic Algorithm (유전알고리즘을 이용한 조합회로용 테스트패턴의 고장검출률 향상)

  • 박휴찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.687-692
    • /
    • 1998
  • Test pattern generation is one of most difficult problems encountered in automating the design of logic circuits. The goal is to obtain the highest fault coverage with the minimum number of test patterns for a given circuit and fault set. although there have been many deterministic algorithms and heuristics the problem is still highly complex and time-consuming. Therefore new approach-es are needed to augment the existing techniques. This paper considers the problem of test pattern improvement for combinational circuits as a restricted subproblem of the test pattern generation. The problem is to maximize the fault coverage with a fixed number of test patterns for a given cir-cuit and fault set. We propose a new approach by use of a genetic algorithm. In this approach the genetic algorithm evolves test patterns to improve their fault coverage. A fault simulation is used to compute the fault coverage of the test patterns Experimental results show that the genetic algorithm based approach can achieve higher fault coverages than traditional techniques for most combinational circuits. Another advantage of the approach is that the genetic algorithm needs no detailed knowledge of faulty circuits under test.

  • PDF

Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization (후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현)

  • Kim, Joon-Hyoung;Sung, Ki-Won;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

Wind Power Generation: Its Impact on Peak Time and Future Power Mix (퐁력전원이 피크타임과 발전설비구성에 미치는 영향분석: 제3차 신재생에너지 기술개발 및 이용.보급 기본계획 기준)

  • Lee, Jin-Ho;Kim, Su-Duk
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.867-876
    • /
    • 2009
  • Although renewable power is regarded a way to active response to climate change, the stability of whole power system could be a serious problem in the future due to its uncertainties such as indispatchableness and intermittency. From this perspective, the peak time impact of stochastic wind power generation is estimated using simulation method up to year 2030 based on the 3rd master plan for the promotion of new and renewable energy on peak time. Result shows that the highest probability of wind power impact on peak time power supply could be up to 4.41% in 2030. The impact of wind power generation on overall power mix is also analyzed up to 2030 using SCM model. The impact seems smaller than expectation, however, the estimated investment cost to make up such lack of power generation in terms of LNG power generation facilities is shown to be a significant burden to existing power companies.

Development of Facial Animation Generator on CGS System (CGS 시스템의 페이셜 애니메이션 발상단계 개발)

  • Cho, Dong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.813-823
    • /
    • 2011
  • This study is to suggest the facial animation methodology for that 3D character animators can use CGS system effectively during on their stage which they create ideas and use repeating a process of facial animation, it has suggested the CGS(Character Generation System) that is a creative idea generation methodology identified and complemented the problem of the existing computerized idea generation, in addition, this research being extended on the article vol.13, no.7, "CGS System based on Three-Dimensional Character Modeling II (Part2: About Digital Process)," on Korea Multimedia Society in July 2010 issue, Through the preceding study on 3D character facial expression according to character's feelings as an anatomical structure and the case study on character expressions of theatrical animation, this study is expected to have effectives as one method for maximization of facial animation and idea generation ability.

Generation Rescheduling Considering Generation Fuel Cost and CO2 Emission Cost (발전연료비용과 탄소배출비용을 고려한 발전력 재배분)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Song, Kyung-Bin;Hwang, Kab-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.591-595
    • /
    • 2013
  • This paper presents a method of generation rescheduling using Newton's Approach which searches the solution of the Lagrangian function. The generation fuel cost and $CO_2$ emission cost functions are used as objective function to reallocate power generation while satisfying several equality and inequality constraints. The Pareto optimum in the fuel cost and emission objectives has a number of non-dominated solutions. The economic effects are analyzed under several different conditions, and $CO_2$ emission reductions offered by the use of storage are considered. The proposed approach can explore more efficient and noninferior solutions of a Multiobjective optimization problem. The method proposed is applied to a 4-machine 6-buses system to demonstrate its effectiveness.

Verification of the Validity of Moisture Transfer Model for Prediction of Indoor Moisture Generation Rate (실내 수증기 발생량 예측을 위한 습기 전달 모델의 검증에 관한 연구)

  • Lee, Dong-Kweon;Kim, Eui-Jong;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • Moisture in a building is one of the most important variables influencing building performance, human health, and comfort of indoor environment. However, there are still lacks in the knowledge of understanding the moisture problem well and controlling moisture. Accordingly, in order to provide the fundamental data to control moisture contents in the indoor air, this study was to predict moisture contents transferred through building envelopes and indoor moisture generation rate. Moisture transfer model was made by physical relations in each node, and the indoor moisture generation rate was gained by comparing the model with experimental analyses. From the study, we found out that moisture generation rate was critical and day-periodic, so that we predicted the indoor moisture content by substituting the constant value gained from the average in a day for the moisture generation rate.