• 제목/요약/키워드: probiotic activity

검색결과 327건 처리시간 0.02초

Probiotic Properties of Lactobacillus plantarum NK181 Isolated from Jeotgal, a Korean Fermented Food

  • Lee, Na-Kyoung;Kim, Hyoun-Wook;Chang, Hyo-Ihl;Yun, Cheol-Won;Kim, Seung-Wook;Kang, Chang-Won;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.227-231
    • /
    • 2006
  • Strain NK181 was isolated for probiotic use from jeotkal and based on results of API 50 CHL kit and 16S rDNA sequencing was tentatively named Lactobacillus plantarum NK181. L. plantarum NK181 was highly resistant to artificial gastric juice (pH 2.5) and bile acid and demonstrated strong adherence to Caco-2 cells. In test using API ZYM kit, eight enzymes were produced. Supernatant of L. plantarum NK181 exhibited about 30% 1,1-diphenyl-2-picyryl hedrazyl (DPPH) radical-scavenging activity and reduced cholesterol by 70%. These results demonstrate potential use of L. plantarum NK181 as health-promoting probiotic.

Isolation, In vitro Antibacterial Activity, Bacterial Sensitivity and Plasmid Profile of Lactobacilli

  • Lonkar, P.;Harne, S.D.;Kalorey, D.R.;Kurkure, N.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권9호
    • /
    • pp.1336-1342
    • /
    • 2005
  • The present research work was conducted to evaluate the beneficial effects as well as the safety aspects of lactobacilli as probiotic. Lactobacilli were isolated from poultry faecal samples, feed samples and from some known preparations procured from poultry feed manufacturers. L. acidophilus and L. sporogenes were tested for the antibacterial activity against four poultry pathogens viz. Escherichia coli, Salmonella spp., Proteus spp. and Pseudomonas aeruginosa. Cell free supernatant (CFS) of L. acidophilus exhibited significantly higher antibacterial activity against Salmonella spp. at original pH (4.50${\pm}$0.02). At the adjusted pH (6.50${\pm}$0.02) significantly higher antibacterial activity was recorded against indicator organism except for P. aeruginosa. Likewise, L. sporogenes exhibited similar antibacterial activity at original as well as adjusted pH except for E. coli. Antibacterial activity against E. coli was significantly higher at adjusted pH than at original pH of CFS. The competitive exclusion of E. coli by lactobacilli over the intestinal epithelial cells (IEC) was checked. L. acidophilus strain I, which was of poultry origin, exhibited maximum attachment over IEC as compared to other three strains of non-poultry origin viz. L. acidophilus strain II, L. sporogenes strain I and II. Overall, L. acidophilus exhibited higher competitive exclusion as compared to L. sporogenes. All the lactobacilli of poultry origin were most sensitive to penicillin G, amoxycillin, ampicillin and chloramphenicol, least sensitive to sulphamethizole, ciprofloxacin, neomycin, norfloxacin and pefloxacin and resistant to metronidazole and nalidixic acid. The isolates from probiotic preparations were most sensitive to ampicillin, amoxycillin and tetracycline, least sensitive to sulphamethizole, norfloxacin, neomycin and ceftriazone and resistant to nalidixic acid and metronidazole. Eight of the multiple drug resistant lactobacilli isolates were studied for the presence of plasmids. Plasmids could be extracted from six isolates of lactobacilli. These plasmids could be responsible for bacteriocin production or for antibiotic resistance of the strains. The lactobacilli need further studies regarding their safety for use in the probiotic preparations.

Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성 (Antioxidant Activity of Kelp Saccharina japonica Extract Fermented by Probiotic Lactic Acid Bacteria)

  • 류대규;박슬기;강민균;정민철;조두민;장유미;정희진;이도하;김영목
    • 한국수산과학회지
    • /
    • 제53권3호
    • /
    • pp.361-367
    • /
    • 2020
  • The objective of this study was to investigate the effect of lactic acid bacteria (LAB) fermentation on the antioxidant activity of kelp Saccharina japonica water extract. Three LAB strains that had exhibited superior antioxidant activity in a previous study were selected for the kelp fermentation starter. The antioxidant activity of the fermented extracts was analyzed during fermentation. After 48 h of fermentation, the extract-fermented Lactobacillus plantarum D-11 strains showed the highest antioxidant activity in terms of DPPH (2,2-diphenyl-2-picryl hydrazyl) radical scavenging, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging, oxygen radical absorbance capacity (ORAC) and fluorescence recovery after photobleaching (FRAP) assay. Furthermore, the analysis of total phenolic and flavonoid contents revealed that the enhanced antioxidant activity was mainly due to the increased antioxidant content from fermentation. Thus, this study suggests that probiotic LAB fermentation is an attractive approach for the development of various kelp fermentation products.

Isolation and Characterization of a Protease-Producing Bacterium, Bacillus amyloliquefaciens P27 from Meju as a Probiotic Starter for Fermented Meat Products

  • Lee, Mi-Sun;Lee, Na-Kyoung;Chang, Kyung-Hoon;Choi, Shin-Yang;Song, Chi-Kwang;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.804-810
    • /
    • 2010
  • This study was performed to select protease-producing Bacillus sp. as a potential probiotic starter for fermented meat products. In order to isolate protease-producing bacterium from meju, measured the diameter of the clear zone on agar plate (TSA, 1% (w/v) skim milk) and analyzed for intracellular protease activity, then 10 Bacillus-like strains were isolated. Three Bacillus-like strains (P19, P27, and P33) among 10 strains were able to tolerate in acidic condition (TSB, pH 2.5, 2 h incubation). These 3 strains were showed antimicrobial activity against food-borne pathogenic bacteria. These vegetative cells of 3 strains were showed a survival rate of 0.04% to 0.08% under the artificial gastric acidic condition (TSB, pH 2.5 with 1% (w/v) pepsin), but spore-forming cells were 56.29% to 84.77%. Vegetative cells of 3 strains were the least bile-resistant, while spore-forming cells of 3 strains showed higher survival rate more than 76% under artificial bile condition (TSB, 0.1% (w/v) oxgall bile). In these strains, P27 strain was finally selected as a good probiotic strain. P27 strain was tentatively identified as Bacillus amyloliquefaciens by API CHB kit and 16S rDNA sequence analysis. The results of this study suggest that B. amyloliquefaciens P27 can be used as a potential probiotic starter for fermented meat product.

In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome

  • You Jin Jang;Bonggyu Min;Jong Hyun Lim;Byung-Yong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1149-1161
    • /
    • 2023
  • Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.

잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과 (Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607)

  • 신수진;하광수;정수지;류명선;김진원;양희종;곽미선;성문희;정도연
    • 생명과학회지
    • /
    • 제30권10호
    • /
    • pp.896-904
    • /
    • 2020
  • 본 연구에서는 가축의 면역증강용 생균제 개발을 위하여 Pediococcus acidilactici SRCM102607의 프로바이오틱스 특성 및 면역활성을 조사하였다. 전통발효식품으로부터 유산균을 분리 하였고, 분리 유산균을 대상으로 가축유해 미생물 5종에 대한 항균활성을 측정하였다. 우수한 결과를 나타내는 5종의 유산균을 1차 선별하였고, 이를 대상으로 생균제 소재 활용 가능성을 확인하기 위해 용혈성, 담즙산염 분해효소, 항산화 활성 분석을 실시하여 최종적으로 SRCM102607을 선별하였으며, 16S rRNA 유전자 염기서열 분석을 통해 Pediococcus acidilactici SRCM102607로 명명하였다. SRCM102607의 pH 2 조건에서 내산성은 1.54×105 CFU/ml의 생균수를 보였으며, 0.5% 이상의 oxgall이 포함된 조건에서도 105 CFU/ml 이상의 높은 생균수를 나타내었다. 또한, 선발균주의 산업적으로 활용할 수 있는 가능성을 검토하기 위해 항생제 내성 및 분해 효소능을 측정하였고 다양한 항생제에 대한 내성과 유해 효소를 생성하지 않음을 확인하였고, 최종적으로 면역 증강제로서의 활용 여부를 확인하기 위해 TNF-α 생성능(171.86±4.00 ng/ml)을 확인하였다. 본 연구를 기반으로 SRCM102607은 가축 생균제 소재로 활용 가능성과 면역활성이 뛰어난 유산균으로 생균제 산업에서의 잠재적 적용 가능성을 확인하였다.

Lactobacillus sakei BK19의 어류 병원성 세균에 대한 항균활성 (Antibacterial Activity of Lactobacillus sakei BKl9 against Fish Pathogenic Bacteria)

  • 양병규;이제희;허문수
    • 미생물학회지
    • /
    • 제39권1호
    • /
    • pp.56-61
    • /
    • 2003
  • 본 실험의 목적은 Gram 양성균 뿐만 아니라 Gram음성세균에 대한 넓은 항균활성 및 내산성 그리고 항생제 내성을 갖고 있는 유용한 probiotic 후보균주를 선발하여 어류의 세균성 질병 예방 흑은 치료를 함으로써 양식산업의 효율성을 증대시키고자 한다. 20균주의 유산균을 김치, 양식 넙치의 장 그리고 각종 젓갈류 중에서 분리하여 어류 병원성 세균에 대한 항균능을 MRS agar상에서 agar spotted method에 의해 조사하여 Vibrio anguillarum, Edwardsiella tarda 그리고 streptococcus sp.에 대해 항균활성 이 있는 7균주를 1차 선발 하고 이들중 항균스펙트럼 이 넓은 BK19를 최종선발하여 동정한 결과 Lactobacillus sakei BKl9로 나타났다. L. sakei BK19의 cell free supernatant를 pH 중화 및 catalase 처리한 후 어병세균에 대하여 항균활성을 확인하였다. L. sakei BK19 supernatant의 V.anguillarum 및 V.alginolyticus에 대한 항균성 기작은 주사전자현미경 관찰을 통하여 확인하였고 세포벽을 붕괴 시킴으로써 성장을 저해하고 사멸시키는 것으로 확인되었다.

Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry

  • Karimi Torshizi, M.A.;Rahimi, Sh.;Mojgani, N.;Esmaeilkhanian, S.;Grimes, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권10호
    • /
    • pp.1495-1500
    • /
    • 2008
  • In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.

Potential Probiotic Characteristics and Safety Assessment of Lactobacillus rhamnosus SKG34 Isolated from Sumbawa Mare's Milk

  • Sujaya, I Nengah;Suwardana, Gede Ngurah Rsi;Gotoh, Kazuyoshi;Sumardika, I Wayan;Nocianitri, Komang Ayu;Sriwidyani, Ni Putu;Putra, I Wayan Gede Artawan Eka;Sakaguchi, Masakiyo;Fatmawati, Ni Nengah Dwi
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.51-62
    • /
    • 2022
  • Lactobacillus rhamnosus SKG34 (LrSKG34), a potential probiotic strain, was successfully isolated from Sumbawa Mare's milk. Our previous studies showed that the strain is resistant to gastrointestinal conditions, possesses antioxidant activity, and lowers blood cholesterol levels. Further clarification of the potential probiotic characteristics and safety assessment are necessary. This study aimed to evaluate the adhesion of LrSKG34 to Caco-2 cell monolayers and its effect on mucosal integrity in vitro. We also examined the LrSKG34 safety profile based on antimicrobial susceptibility testing, haemolytic activity determination, Caco-2 cell monolayer translocation evaluation, and in vivo investigation of the effect of LrSKG34 on the physiology, biochemical markers, and histopathological appearance of major organs in an animal model. LrSKG34 attached to Caco-2 cell monolayers and maintained mucosal integrity in vitro. The typical resistance of lactobacilli to ciprofloxacin, gentamicin, vancomycin, trimethoprim-sulfamethoxazole, and metronidazole was confirmed for LrSKG34. No haemolytic activity was observed on blood agar plates, and no LrSKG34 translocation was observed in Caco-2 cell monolayers. Administration of LrSKG34 to Sprague-Dawley rats did not adversely affect body weight. No abnormalities in hematological parameters, serum biochemistry levels, or histopathological structures of major organs were observed in LrSKG34-treated rats. Collectively, the results implicate LrSKG34 as a promising and potentially safe probiotic candidate for further development.

울릉도 토양에서 분리한 Bacillus 속 균주의 프로바이오틱 잠재성 평가 (Assessment of Probiotic Potential of Bacillus spp. Isolated from Ulleungdo, Korea)

  • 심명욱;한덕기
    • 한국해양생명과학회지
    • /
    • 제8권1호
    • /
    • pp.50-55
    • /
    • 2023
  • 프로바이오틱스는 다양한 환경에서 분리되어 왔으며, Bacillus 균주는 유산균과 같은 일반적인 프로바이오틱스의 한계를 보완할 수 있는 내생포자 형성 능력으로 인해 프로바이오틱스 균주 중에서 유리하다. 본 연구의 목적은 한국에서 오염되지 않은 환경으로 알려진 울릉도 토양에서 분리된 Bacillus 균주의 프로바이오틱스 잠재성을 조사하는 것이다. 토양 시료는 울릉도 각지에서 채취하였으며, 항생제 내성과 효소 활성을 평가하였다. 항생제에 내성을 나타내지 않는 6개의 Bacillus 균주를 확보하였고 이후에 효소 활성을 검사하였다. 인체에 악영향을 미칠 수 있는 β-glucuronidase 효소는 활성이 나타나지 않았으며, 시중에서 판매되고 있는 Bacillus 프로바이오틱스와 유사한 효소의 활성과, 추가적으로 펩타이드 가수분해효소인 Leucine arylamidase의 활성이 나타난 NB-1 균주가 확인되었다. 이에, 추가적인 효능 연구 및 안정성 실험을 통해 프로바이오틱스 균주로서의 가능성을 모색해야 할 필요가 있다고 판단된다.