• Title/Summary/Keyword: probiotic 유산균

Search Result 138, Processing Time 0.028 seconds

Antioxidant Activity of Lactic Acid Bacteria Isolated from Korean Traditional Food Kimchi (한국전통식품 김치로부터 분리한 유산균주의 항산화 활성)

  • Kim, Da-Young;Kim, Hong Seok;Yoo, Jung Sik;Cho, Yoon Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.89-98
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic properties of lactic acid bacteria (LAB) isolated from a Korean traditional food kimchi. Gram staining was performed by Macrogen (Macrogen, Inc.) for identification of the LAB. Five strains of LAB were identified, including DKGF9 (Lactobacillus plantarum), DKGF1 (L. paracasei ), DKGF8 (L. casei ), DK207 (L. casei ), and DK211 (L. casei ). The biological activities of the isolated strains were assessed. The results showed that heat resistance of the strains was similar to or higher than the commercial strain L. acidophilus LA-5. Indirect testing of the ability of the strains to attach to the mucin layer revealed that DKGF9, DKGF1, and DKGF8 have high binding affinities for the mucous layer. All strains showed antimicrobial activity similar to or higher than the commercial strain LA-5. In proteolysis experiments, the diameters of proteolysis zones of the five strains increased in the period of 24-72 h, with DKGF1 exhibiting the largest zone diameter. Three strains were selected based on their antioxidant activities. Among the five isolated strains, L. paracasei DKGF1 showed potential probiotic activity, and thus, it may be useful for the development of health-promoting products.

Isolation and Characterization of a Bacteriocin-Producing Lactobacillus sakei B16 from Kimchi (김치에서 박테리오신을 생산하는 Lactobacillus sakei B16의 분리 및 특성 분석)

  • Ahn, Ji-Eun;Kim, Jin-Kyoung;Lee, Hyeong-Rho;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.721-726
    • /
    • 2012
  • Lactic acid bacteria (LAB) are able to secrete antimicrobial peptides called bacteriocins, which inhibit other bacteria such as pathogenic microorganisms. Therefore, bacteriocin-producing starters can be used as natural biopreservatives for various foods. The objective of this study was to screen and characterize bacteriocin-producing LAB from Kimchi and to investigate their applicability as a starter in Kimchi fermentation. To screen bacteriocin-producing LAB, gram-positive and gram-negative bacteria were used as indicators. To measure the antimicrobial activities of isolates, agar well diffusion assay method was used. According to the results, bacteriocin produced by $Lb.$ $sakei$ B16 showed antimicrobial activity against $Listeria$ $monocytogenes$ ATCC 19115, $Escherichia$ $coli$ KCTC 1467, and$Lactobacillus$ $plantarum$ KTCT 3104. Furthermore, bacteriocin was very stable after treatment with high temperature and high and low pH, but its effects were inhibited by treatment with proteolytic enzymes such as trypsin, proteinase K, and ${\alpha}$-chymotrypsin, revealing their bacteriocin-like protein- based structure. These results suggest that $Lb.$ $sakei$ B16 and its bacteriocin are good candidates as a functional probiotic and natural biopreservative, respectively, in fermented foods.

Adhesion Ability and Inhibition of Enterohemorrhagic E. coli O157:H7 Adhesion to Intestinal Epithelial Cells in Lactobacillus acidophilus (Lactobacillus acidophilus의 장 상피세포에 대한 부착능력 및 장 출혈성 대장균의 부착 억제 능력)

  • 김영훈;박순옥;한경식;오세종;유승권;김세헌
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • The ability of probiotics containing Lactobacillus acidophilus to adhere to the intestinal epithelium may play an important role in colonization of the gastrointestinal tract and preventing enteric pathogen such as enterohemorrhagic E. coli(EHEC O157:H7. In the study, we investigated the adhesion to human intestinal epithelial cells(HT-29) of strains of L. acidophilus(3 from human, 2 from pig, and 1 from calf). All of the tested strains of L. acidophilus were highly observed adhesion ability(from 10$\^$6/ to 10$\^$7/ cfu/mL), compared to L. rhamnosus GG as control. Also, adhered strains of L. acidophilus were significantly preserved in serial wash-out steps. However, no correlation could be observed between cell surface hydrophobicity and adhesion abilities of the tested strains of L. acidophilus. Inhibition of adhesion of EHEC O157:H7 was also examined, a 2 log cycle reduction was observed by all of the tested strains of L. acidophilus. These results suggest that the strains of L. acidophilus with high adhesion ability are resistant to wash-out and adhesion ability inhibition by selected strains of L. acidophilus helps to prevent adhesion of EHEC O157:H7 to intestinal epithelial cells.

Isolation and Identification of Lactic Acid Bacteria with Probiotic Activities from Kimchi and Their Fermentation Properties in Milk (전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성)

  • Lim, Young-Soon;Kim, JiYoun;Kang, HyeonCheol
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-128
    • /
    • 2019
  • Lactic acid bacteria obtained from traditional Kimchi were selected on the basis of their caseinolytic activity and lactose usability and examined for availability as a starter in probiotic activity. Thirty-two strains were selected as lactic acid producing bacteria in BCP agar, and two strains (KC23 and KF26) with more than 90% resistance for both acid and bile salts were selected. The two strains were identified as L. plantarum (KC23) and L. paracasei (KF26) by API 50 CHL system and 16S rRNA sequence analysis. L. plantarum (KC23) was finally selected based on its biochemical characteristics for lactose and raffinose usability. Free tyrosine content increased rapidly in 10% skimmed milk medium, from $24.1{\mu}g/mL$ after 8 h to $43.9{\mu}g/mL$ after 16 h. Additionally, the caseinolytic clear zone of 12 mm of L. plantarum (KC23) was greater than the 9 mm zone of commercial L. acidophilus CSLA. The bacterium exhibited mesophilic growth and yielded $8.9{\times}10^8CFU/mL$ when incubated at $37^{\circ}C$ for 12 h at pH 4.25. Moreover, L. plantarum KC23 exhibited antibacterial activity as it formed a clear zone of 8-13 mm for the 5 pathogens. Adherent activity was 2.23 fold higher than that of LGG. The acidity of 10% skimmed milk fermented for 12 h was 0.74%.

Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk (전통발효식품에서 분리한 유산균의 항균 활성 및 발효유 스타터 개발)

  • Park, Jong-Hyuk;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Choi, Kyung-Min;Cha, Jeong-Dan;Lee, Tae-Bum;Lee, Min-Jeong;Jung, Hoo-Kil
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.712-719
    • /
    • 2013
  • This study was conducted to investigate the antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and to develop a new starter for fermented milk. The isolates were identified using 16S rDNA sequencing and named Lactobacillus plantarum A, Leuconostoc lactis B and L. acidophilus C. The activity of these strains to inhibit the growth of food-borne human pathogens (Escherichia coli NCTC 12923, Salmonella Typhimurium NCTC 12023, Listeria monocytogenes NCTC 11994) was measured using the paper disc method. All these strains showed strong antibacterial activity against Li. monocytogenes NCTC 11994. The experiment groups were the fermented milks with these strains, and the control group was the fermented milk with the commercial starter (ABT 5). The change of pH, acidity and viable cell counts were measured during their aging time. All the experiment groups showed a significant difference in their aging times compared to the control group. However, the sensory test showed that the experiment groups can be used as useful starters for fermented milk. This result suggests that L. plantarum A, Leu. lactis B and L. acidophilus C have the potential to be developed as new starters for fermented milk.

Enhancement of Skin Antioxidant and Anti-Inflammatory Potentials of Agastache rugosa Leaf Extract by Probiotic Bacterial Fermentation in Human Epidermal Keratinocytes (프로바이오틱 유산균 발효에 의한 배초향 잎 추출물의 피부 항산화 및 항염증 활성 증대)

  • Lim, Hye-Won;Lee, Yoonjin;Huang, Yu-Hua;Yoon, Ji-Young;Lee, Su Hee;Kim, Kyunghoon;Lim, Chang-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This study aimed to investigate the effects of probiotic fermentation by comparing the skin antioxidant and anti-inflammatory properties of non-fermented (ARE) and fermented (ARE-F) hot water extracts of Agastache rugosa leaves. ARE-F was obtained via ARE fermentation using Lactobacillus rhamnosus HK-9. In vitro, anti-inflammatory properties were evaluated by analyzing the levels of nitric oxide (NO), reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated HaCaT keratinocytes. In vitro antiradical activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Attenuation of LPS-stimulated NO (p < 0.01), ROS (p < 0.001) and iNOS (p < 0.05) levels by ARE-F was significantly stronger than that by ARE in HaCaT keratinocytes. However, no differences were observed between the DPPH radical scavenging activities of ARE and ARE-F. ARE-F possesses enhanced skin antioxidant and anti-inflammatory properties, suggesting that probiotic bacterial fermentation can be considered an effective tool for augmenting some pharmacological properties of A. rugosa leaves. In brief, the skin antioxidant and anti-inflammatory potentials of A. rugosa leaf extract are augmented by the fermentation with L. rhamnosus HK-9, a probiotic bacterium.

유산균들의 콜레스테롤 저하성, 내산성, 내담즙성, 항생제 내성 비교

  • Park, So-Young;Ko, Young-Tae;Jeong, Hoo-Kil;Yang, Jin-Oh;Chung, Hyun-Seo;Kim, Young-Bae;Ji, Geun-Eog
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.304-310
    • /
    • 1996
  • For a probiotic yoghurt it is desirable to utilize lactic acid bacteria with a high survival rate and beneficial function to human beings. We have examined a variety of lactic acid bacteria to assess the acid and bile tolerance and antibiotic resistance. In addition, an in vitro culture experiment was performed to evaluate their ability to reduce cholesterol levels in the growth medium. Thirteen strains were selected from in vitro cholesterol assays and fed to Sprague-Dawley rats with a high-cholesterol diet. Among the 13 strains tested, 8 strains were shown to reduce serum cholesterol levels significantly after 24 days of administration in vivo. Rats were fed lyophilized yoghurt powder fermented with a combination of 3 selected strains: Bifidobacterium infantis AM-220, Lactobacillus AM-245, and Styeptococcus MA-1. The levels of total cholesterol and low density lipoprotein were significantly lower (p$\leq$0.05) in rats fed the yoghurt powder compared with control group. These studies suggest that yoghurt fermented with appropriately selected lactic acid bacteria may have a anticholesterolemic effect.

  • PDF

Anti-Allergy Effect of Lactic Acid Bacteria (유산균의 항알레르기 효과)

  • Ham, Jun-Sang;Kim, Hyun-Soo;Noh, Young-Bae;Chae, Hyun-Seok;Ahn, Chong-Nam;Han, Gi-Sung;Choi, Suk-Ho;Jeong, Seok-Geun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • This review summarizes the cause of allergy and control by lactic acid bacteria. Atopic diseases such as asthma, rhinitis, eczema and food allergy have increased in most industrialized countries of the world during the last 20 years. The reasons for this increase are not clear and different hypotheses have been assessed including increased exposure to sensitizing allergens or decreased stimulation of the immune system during critical periods of development. Probiotic bacteria, which beneficially affect the host by improving its microbial balance, may mediate anti-allergenic effects by immune stimulation. Although more clinical evidences are required, the possible role of specific LAB strains in the prevention of allergic diseases has become more evident. since the role of functional food is important for prevention, it is expected for the more anti-allergy fermented milk products to be on the market.

  • PDF

Study on Characteristics of Lactobacillus Isolated from Hen′s Cecum (산란계 맹장 유산균의 특성에 관한 연구)

  • 김상호;박수영;유동조;이상진;나재천;최철환;이상진;류경선
    • Korean Journal of Poultry Science
    • /
    • v.27 no.3
    • /
    • pp.227-233
    • /
    • 2000
  • Preset study was carried out to evaluate characteristics of lactic acid producing bacteria(LAB) in hen's cecum as probiotics value. Distribution of LAB in intestinal tracts was investigated using 5∼25 weeks - old hens. So, 12 strains to LAB with different morphology were isolated purely. Acid tolerance of LAB tested at pH 1, 2, 3, and 4, and bile resistant also tested at 0, 0.3% and 0.5% bile salt concentration. Growth pattern of LAB observed to 60h. All strains of cecal LAB couldn't survive at pH 1, and decreased linearly survival colony after incubation at pH 2 although some strains could survive for 2h. Most of LAB maintained constant number at pH 3 and 4. The bacterial action could increase linearly at 0% bile salt concentration in all of tested strains. However, only one strain could multiply at 0.3% bile salt, others were influenced by bile salt. That tendency was similar at 0.5% bile salt. Growth was peaked at 12 to 18 h after innoculation. After peak, the decreasing pattern of colony was different to strains which some strains decreased rapidly or maintained for long time. The LAB of hen's cecum was similar to intolerance acidity, but different to resistant to bile salt and growth pattern by strain. So, we choose three strains which have probiocs value, and identified as Lactobacillus amylovorus LLA7, Lactobacillus crispatus LLA9 and Lactobacillus vaginalis LLA11.

  • PDF

Draft genome sequence of Lactobacillus salivarius KLW001 isolated from a weaning piglet (이유자돈으로부터 분리한 Lactobacillus salivarius KLW001의 유전체 분석)

  • Jin, Gwi-Deuk;Lee, Jun-Yeong;Kim, Eun Bae
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.134-136
    • /
    • 2017
  • Lactobacillus salivarius KLW001, a species of lactic acid bacteria (LAB), was isolated from a weaning piglet in a swine farm, South Korea, to develop an antimicrobial probiotic strain for piglets. Herein, we report the draft genome sequence of the strain. The genome contains 2,326,706 bp with a G+C content of 33.0% in 166 contigs (${\geq}500bp$). From the genome, we found out 4 genes related to antibiotic resistance, 36 genes for phages, 3 genes for bile hydrolysis, and 27 CRISPR spacers.