• 제목/요약/키워드: probable precipitation

검색결과 79건 처리시간 0.026초

Estimation of Probable Maximum Precipitation In Korea : Comparison with 2004 Result (한국 가능최대강수량 추정 : 2004년 결과와의 비교)

  • Lee, Okjeong;Sim, In Kyeong;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2018
  • 현재까지 우리나라에서는 공식적으로 총 세 번의 전국 가능최대강수량(Probable Maximum Precipitation, PMP) 추정이 이루어졌다. 첫 번째는 1988년에 건설부 주도로 작성된 바 있는데, 1987년까지의 관측된 기상자료를 이용한 수문기상학적인 방법을 전국에 적용하여 한국가능최대강수량도를 작성하였다. 이후 12년 뒤인 2000년에 건설교통부 주도로 그 동안의 축적된 관측자료를 추가하여 한국가능최대강수량을 추정하였다(건설교통부, 2000a). 2000년의 전국 PMP도 추정은 WMO 보고서(WMO, 1986)를 가능한 충실히 반영하려는 노력이 있었으며, 과학적인 측면에서도 한층 진일보된 PMP도가 생산되었다고 평가할 수 있다. 그러나 2000년 이후 태풍 '루사' 또는 태풍 '매미'와 같은 관측 최대 강우량 기록을 경신하는 대형 호우사상들이 연이어서 발생하였기 때문에, 기존에 추정된 전국 PMP도에 대한 의문이 제기됨에 따라 해당 호우들을 추가하여 전국 PMP도를 개략적으로 재산정하여 제시한 바 있다(건설교통부, 2004). 국외에서는 PMP 추정의 표준으로 인정받고 있는 World Meteorological Organization (WMO) 보고서(WMO, 1986)가 2009년에 수정되어 발간됨에 따라 PMP 추정절차 중 일부 방법에 대한 기술적 보완이 이루어졌다(WMO, 2009). 그러나 우리나라의 경우 2008년 PMP 및 PMF 산정절차 지침 수립 용역 이후 중앙정부 차원의 전국 PMP도 생산은 더 이상 추진되고 있지 않은 상태이기 때문에, 2018년 현재에도 2000년 혹은 2004년에 재산정된 전국 PMP도를 그대로 수자원 실무에 이용하고 있다. 이에 본 연구에서는 WMO(2009)에서 제시하는 방법 및 최근 국외에서 적용되고 있는 PMP 추정방식을 참고하여 1973년부터 2017년까지의 기상 자료를 이용하여 전국을 대상으로 PMP를 추정하여 다양한 지속시간별 영향면적별 전국 PMP도를 생산하고 기존 2004년 보고서 결과와 비교를 수행하고자 한다.

  • PDF

Comparative Study on Rainfall Characteristic at World Cities for Evaluation of Flood Risk (정량적 수해위험도 평가를 위한 세계 주요도시 강우특성의 비교연구)

  • Park, Min-Kyu;Park, Moo-Jong;Shin, Sang-Young;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제11권3호
    • /
    • pp.175-182
    • /
    • 2011
  • The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. The global assessment for the flood index require the process considering different climate of the world cities. In this study, the actual rainfall observations of the world's major cities were collected. To compare different rainfall characteristics, we calculated some indicators such as frequency factor etc using the probable maximum precipitation. Using the results of these indicators, major cities in Korea show greater variability in the rainfall characteristics when compared to other major cities in the world. These results are expected to be useful for the development of global flood risk assessment as well as the setting the direction for future flood prevention measures.

Analysis on uncertainty in Probable Maximum Precipitation estimation with the pseudo-adiabatic assumption (위단열 가정을 기반한 가능최대강수량 산정의 불확실성 분석)

  • Kim, Youngkyu;Son, Minwoo;Kim, Sunmin;Tachikawa, Yasuto
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.58-58
    • /
    • 2022
  • 본 연구는 수분최대화방법(Moisture-maximizing method)를 기반으로 PMP(Probable Maximum Precipitation)을 산정하는 방법론을 평가하는 것을 목적으로 수행되었다. 수분최대화 방법은 특정 호우사상의 대기 수분 조건을 극대화하여 PMP 를 산정한다. 여기서, 대기 수분 조건은 대기 표면부터 상층부의 총 수분량으로부터 얻어지는 가강수량(Precipitable water, PW)으로 표현된다. PW 는 라디오존데로부터 직접 관측 및 수집되지만, 장기간 수집이 어렵고, 수집된 자료는 다수의 이상치 및 결측치를 포함한다. 이에 따라, WMO(World Meteorological Organization)에서는 표면 이슬점을 이용하여 위단열 가정(Pseudo-adiabatic assumption)하에PW 를 간접적으로 산정하는 방법론을 기반한 PMP 산정을 권고한다. 본 연구는 일본의 다수의 지역을 대상으로 실제 PW 를 이용하는 방법과 표면 이슬점을 이용하는 방법을 기반으로 산정된 수분최대화방법의 변수들의 편차를 분석하였다. 그 결과, 따듯한 기후 특성을 나타내는 일본의 남부지역은 두 방법의 편차가 매우 작았지만, 추운 기후 특성을 나타내는 일본의 북부지역은 표면 이슬점으로 산정된 PW 가 실제 PW 에 비해 과소 산정되어 PMP 를 과대 산정시켰다. 특히, 이불확실성은 호우 발생 시 표면 이슬점이 18℃ 이하일 때, 두드러지게 나타났다. 본 연구는 이불확실성을 밝히기 위해 실제 라디오존데로부터 관측된 대기 상층부의 대기 프로파일 검토하였다. 그 결과, 표면에서 가까운 대기 상층부의 위치에서 불규칙적으로 이슬점이 증가하는 패턴을 나타냈지만, 위단열 가정은 이를 묘사하기 어려웠다. 이는 결국 실제 PW 에 비해 이슬점을 이용하여 산정된 PW 가 과소 산정되는 결과로 이어졌다. 결과적으로, 호우 발생 시 표면 이슬점이 18℃ 이하로 낮은 지역에서 산정된 PW 를 적용하는 수분최대화방법으로 산정된 PMP 는 낮은 신뢰도를 나타낸다.

  • PDF

Investigating the scaling effect of the nonlinear response to precipitation forcing in a physically based hydrologic model (강우자료의 스케일 효과가 비선형수문반응에 미치는 영향)

  • Oh, Nam-Sun;Lee, K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.149-153
    • /
    • 2006
  • Precipitation is the most important component and critical to the study of water and energy cycle. This study investigates the propagation of precipitation retrieval uncertainty in the simulation of hydrologic variables for varying spatial resolution on two different vegetation cover. We explore two remotely sensed rain retrievals (space-borne IR-only and radar rainfall) and three spatial grid resolutions. An offline Community Land Model (CLM) was forced with in situ meteorological data In turn, radar rainfall is replaced by the satellite rain estimates at coarser resolution $(0.25^{\circ},\;0.5^{\circ}\;and\;1^{\circ})$ to determine their probable impact on model predictions. Results show how uncertainty of precipitation measurement affects the spatial variability of model output in various modelling scales. The study provides some intuition on the uncertainty of hydrologic prediction via interaction between the land surface and near atmosphere fluxes in the modelling approach.

  • PDF

Watershed-based PMF and Sediment-runoff Estimation Using Distributed Hydrological Model (분포형 수문모형을 이용한 유역기반의 PMF 및 유사-유출량 산정)

  • Yu, Wansik;Lee, Giha;Kim, Youngkyu;Jung, Kwansue
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제60권2호
    • /
    • pp.1-11
    • /
    • 2018
  • Probable Maximum Flood (PMF) is mostly applied for the designs of large-scale hydraulic structures and it is estimated by computing the runoff hydrograph where Probable Maximum Precipitation (PMP) is inserted as design rainfall. The existing PMP is estimated by transferring the heavy rainfall from all watersheds of korea to the design watershed, however, in this study, PMP was analyzed by selecting only rainfall events occurred in the design watershed. And then, Catchment-scale Soil Erosion Model (CSEM) was used to estimate the PMF and sediment-runoff yield according to the watershed-based estimated PMP. Although the PMF estimated in this study was lower than the existing estimated PMF in the Yongdam-dam basin, it was estimated to be higher than the 200-year frequency design flood discharge. In addition, sediment-runoff yield was estimated with a 0.05 cm of the maximum erosion and a 0.06 cm of the maximum deposition, and a total sediment-runoff yield of 168,391 tons according to 24-hour PMP duration.

Reestimation of Hydrologic Design Data in Donghwa Area (동화지구 절계 수문량 재추정)

  • Kwon, Soon-Kuk;Lee, Jae-Hyoung;Jung, Jae-Sung;Chon, Il-Kweon;Kim, Min-Hwan;Lee, Kyung-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제46권6호
    • /
    • pp.3-10
    • /
    • 2004
  • The fundamental study of hydrologic redesign of Donghwa area located in a sccond tributary of Seomjin river was performed. The amounts of hydrologic design were estimated using the available cumulated hydrology data provided by Korea Agricultural and Rural Infrastructure Corporation (KARICO). The management status of The water resources in Donghwa area was also widely surveyed. The probability rainfalls, probable maximum precipitation (PMP) and probability floods were estimated and subsequently their changes analyzed. The amount of 200 year frequency rainfall with l day duration was 351.1 mm, 2.5 % increased from the original design value, and The PMP was 780.2 mm. The concentration time was reestimated as 2.5 hours from existing 2.4 hours. Soil Conservation Service(SCS) method was used to estimate effective rainfall- The runoff curve number was changed from 90 to 78, therefore the maximum potential retention was 71.6 mm, 154 % increased from the original value. The Hood estimates using SCS unit hydrograph showed 8 % increase from original value 623 $m^3$/s to 674 $m^3$/s and The probable maximum Hood was 1,637 $m^3$/s. Although the Row rate at the dam site was increased, the Hood risk at the downstream river was decreased by the Hood control of the Donghwa dam.

PMP Estimation and Its Application for the Design Flood Determination in River Basin (하천유역의 설계 홍수량 결정을 위한 P.M.P.의 산정 및 적용)

  • 이순탁;박정규
    • Water for future
    • /
    • 제19권1호
    • /
    • pp.75-86
    • /
    • 1986
  • This study aims at the analysis and application of PMP(Probable Maximum Precipitation)for the determination of design flood in the river basin planning and design of major hydraulic structures. PMP was estimated by hydro-meterological method statistical method and envelope curve method. PMF(Probable Maximum Flood)was then estimated from this PMP by synthetic unit hydrograph method and chow method. From the comparison of three methods for PMP estimation of magnitude of PMP in order of statistical, hydro-metrological, envelope curve method. Among PMP results estimated by each method it is believed that the hydro-meteorological method gave the best proper value in comparison with historical maximum rainfall because of this method reflected upon all meterological factor. From the comparison of PMP with probable rainfall and flood, it was shown that estimated value by statistical method and hydro-metrological method were nearly equivalent to the value of return period 100 years and its value of envelope curve method was equivalent to return period 200 to 500 year. It was found that PMF estimated from would be more safe for the design of major hydraulic structures in the consideration.

  • PDF

PMP Estimation and Its Application for the Design Flood Determination in River Basin (하천유역의 설계 홍수량 결정을 위한 P.M.P의 산정 및 적용)

  • 이순택;박정규
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 1986년도 제28회 수공학연구발표회논문초록집
    • /
    • pp.93-101
    • /
    • 1986
  • This study aims at analysis and application of PMP(Probable Maximum Precipitation) for the determination of design of major hydraulic structures. PMP was estimated by hydro-meteorolgical method and envelope curve method. PMF(Probable Maximum Flood) was then estimated from this PMP by synthetic unit hydrograph method and chow method. From the comparison of three methods for PMP estimation of magnitude of PMP in order of statistical, hydro-meteorlogical, envelope curve method. Amon PMP results estimated by each method it is believed that the hydro-meteorological method gave the best proper value in comparison with historical maximum rainfall because of this method reflected upon all meteorological factor. From the comparison of PMP with probable rainfall and flood, it was shown that estimated value by statistical method and hydro-metelogical method were nearly equivalent to the value of return period 200 to 500 year. It was found that PMF estimated from would be more safe for the design of major hydraulic structures in the consinderation.

  • PDF

Modeling Downstream Flood Damage Prediction Followed by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측 모델링)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Jung, In-Kyun;Jung, Kwan-Soo;Lee, Joo-Heon;Kang, Bu-Sik;Yoon, Chang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제52권6호
    • /
    • pp.63-73
    • /
    • 2010
  • This study is to develop a downstream flood damage prediction model for efficient confrontation in case of extreme and flash flood by future probable small agricultural dam break situation. For a Changri reservoir (0.419 million $m^3$) located in Yongin city of Gyeonggi province, a dam break scenario was prepared. With the probable maximum flood (PMF) condition calculated from the probable maximum precipitation (PMP), the flood condition by dam break was generated by using the HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) model. The flood propagation to the 1.12 km section of Hwagok downstream was simulated using HEC-RAS (Hydrologic Engineering Center - River Analysis System) model. The flood damaged areas were generated by overtopping from the levees and the boundaries were extracted for flood damage prediction, and the degree of flood damage was evaluated using IDEM (Inundation Damage Estimation Method) by modifying MD-FDA (Multi-Dimensional Flood Damage Analysis) and regression analysis simple method. The result of flood analysis by dam-break was predicted to occurred flood depth of 0.4m in interior floodplain by overtopping under PMF scenario, and maximum flood depth was predicted up to 1.1 m. Moreover, for the downstream of the Changri reservoir, the total amount of the maximum flood damage by dam-break was calculated nearly 1.2 billion won by IDEM.

Estimation of Probable Maximum Flood by Duration using Creager Method (Creager 기법을 이용한 지속시간별 가능최대홍수량 산정)

  • Kang, Boo-Sik;Ryu, Seung-Yeop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제11권1호
    • /
    • pp.77-84
    • /
    • 2011
  • The methods of the rational formula and Kajiyama formula have been widely used for estimating the peak flood for design to all kind of hydraulic structure. However, there are many limitations and we have to apply these methods to ungauged basin. These methods require to calculate the Probable Maximum Precipitation (PMP) before determining the Probable Maximum Flood (PMF). Creager's method (Creager et al., 1945) is a kind of estimation of specipic flood and this method provided nonlinear equations based on relationship between the drainage area and PMF in order to calculate the PMF of multipurpose dams over medium-sized. But this method has not much applied in Korea. Creager's coefficient is not clear about its application because this method has never been applied to dams in Korea. Based on the PMP for rainfull-runoff models with the PMF of small and larger dams in this research, the range and standard of Creager's coefficients with parameters are proposed to apply basin areas in Korea.