• Title/Summary/Keyword: probable areal rainfall

Search Result 3, Processing Time 0.024 seconds

The Estimation of Areal Reduction Factor(ARF) in Han-Rwer Basin (한강유역의 면적감소계수 산정)

  • Jeong, Jong-Ho;Na, Chang-Jin;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.173-186
    • /
    • 2002
  • Rainfall-runoff model is usually used in estimating the design flood, and the most important elements in this model are probable rainfall and unit hydrograph. So, it is the most important step to estimate probable rainfall reasonably and exactly. If a basin area exceeds a certain scale, probable areal rainfall should be used as probable rainfall, but, Probable point- mean rainfall be usually used in Korea. Consequently, probable rainfall is used too high and unit hydrograph is used relatively too low. Thus the improvement is unavoidable. So, in this study, the parameters are proposed that transform the 1day, 2day rainfall to 24hr, 48hr rainfall, and areal rainfall data series are composed by using the same time rainfall data. Also, the areal reduction factor(ARF) is developed as the increase of area by the calculated probable point mean rainfall and probable areal rainfall by frequency analysis in Han-River basin. It can be the measure to easily transform probable point- mean rainfall to probable areal rainfall.

A Study on the Analysis of Time-Regional Distribution of PRecipitation Frequency and Rainfall INternsity in Korea. (강수빈도 및 강우강도의 시공적 분포분석에 관한 연구)

  • 이재준;손광익
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.53-72
    • /
    • 1981
  • In this study, South Korea is divided into 5 zones and is studied about the analysis of time-regional distribution of previpitation frequency and rainfall intensity in Korea. In the previpitation frequency analysis, the basic data groups of 39 stations were selected. The diagram of previpitation frequency was drawn, and the time-regional distribution of precipitation frequency was analized. In the rainfall intensity analysis, the basic data groups of 36 stations were selected. The probable rainfall, I-D-F curve, and regression equation between 24hr. and 10min.-18hr. areal depth were obtained. The results of this study are following; 1) The precipitation class of max. recurrence probability in every season except summer was commonly (1) 1-5mm, (2) 0.1-1mm, (3) 5-10mm in order. 2) The zone of max. recurrence frequency owing to the precipitation class was zone II in precipitation frequency of below 20mm, zone IV in precipitation frequency of 30-40mm, zone I in precipitation frequency of above 70mm for a year. 3) The recurrence probability of precipitation in Korea can be represented to the equation of exponential function; $$W(x)=e^{\alpha+\beta}$$ 4) The first and third zones were expected heavy rain for the short and long duration. 5) The I.D.F. curves were drawn, and established that the time interval for the least deviation of I.D.F curve is 10~40min., 40min. -4hr., 4~24hr. 6) The regression equations of areal mean depth between 24hr. and 10min.-18hr. for each zone were obtained. 7)The probable rainfall of 36 points were calculated.

  • PDF

Studies on the Some Hydrological Quantities of Principal Locations in the Basin of Geum River(I) (금강유역(錦江流域) 주요지점(主要地点)의 제(諸) 수문량(水文量)에 관(關)한 연구(硏究)(I))

  • Ahn, Byoung Gi;Cho, Seung Seup
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.281-300
    • /
    • 1975
  • The precipitation data and water level data in twenty-four sampling places, to investigate same hydrological quantities along the basin of Geum River, have been analyzed, and the findings for the first report are summarized as follows. 1. The mean annual precipitation in the basin of Geum River is of 1203mm, and the areal weight of areal rainfall by Thiessen's method shows as Table 1. 2. The areas where have maximum annual precipitation of 1501 to 2000mm, are seventeen placed among twentyfour gauging stations, and it is founded to be the highest rate with 71 percents. The precipitation of below 1500mm is measured in the other three statinons, and that of above 2001mm in four stations, too. 3. The areas where have maximum rainfall of 201 to 300mm within a day, are fifteen places, and that comes in the highest rate of distribution with 63 percents. 4. As to distribution of the places with maximum rainfall of below and above 300mm within two days, it shows respectively 50 percents. 5. The areas where have maximum rainfall of 301 to 400mm within three days, are fifteen places, and it is the highest rate of distribution with 63 percents. 6. The fourteen places have maximum rainfall of 401 to 600mm within a continuous day, it is the highest rate of distribution with 58 percents. 7. Table 5 shows probable maximum rainfall within a day, and it does the most rainfall a long the upper stream of Daecheong dam site around Muju, and the next shows in the areas around Ganggyeung, Gongju and Buyeu. 8. During irrigation period on paddy corp, for 100 days from early ten days in June to early ten days in September the areas where have rainfall of 601 to 800mm are sixteen places, and it is the highest rate of distribution with 76 percents, as Table 6 9. The areas where have effective rainfall of 501 to 600mm, are fifteen places, and it is the highest rate of distribution with 71 percents. Thirteen places have the effective ratio of 66 to 75 percents, and it means 62 percents of distribution, and the next, 76 to 85 percents in the seven places, and it comes 33 percents. 10. The areas where have probable effective rainfall of 401 to 500mm, are fourteen places, which is about 100mm less than mean effective rainfall in each area, and that comes 67 percents of distribution. 11. A particular year can not be appointed as once -in-10 year drought in the same year as a whole in the basin of Geum River. 12. The basin of Geum River, s/S being 0.53 to 0.74, has relatively proper conditions in the aspect of water resources.

  • PDF