• Title/Summary/Keyword: probability-based local map

Search Result 23, Processing Time 0.02 seconds

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

Probability Map of Migratory Bird Habitat for Rational Management of Conservation Areas - Focusing on Busan Eco Delta City (EDC) - (보존지역의 합리적 관리를 위한 철새 서식 확률지도 구축 - 부산 Eco Delta City (EDC)를 중심으로 -)

  • Kim, Geun Han;Kong, Seok Jun;Kim, Hee Nyun;Koo, Kyung Ah
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.67-84
    • /
    • 2023
  • In some areas of the Republic of Korea, the designation and management of conservation areas do not adequately reflect regional characteristics and often impose behavioral regulations without considering the local context. One prominent example is the Busan EDC area. As a result, conflicts may arise, including large-scale civil complaints, regarding the conservation and utilization of these areas. Therefore, for the efficient designation and management of protected areas, it is necessary to consider various ecosystem factors, changes in land use, and regional characteristics. In this study, we specifically focused on the Busan EDC area and applied machine learning techniques to analyze the habitat of regional species. Additionally, we employed Explainable Artificial Intelligence techniques to interpret the results of our analysis. To analyze the regional characteristics of the waterfront area in the Busan EDC district and the habitat of migratory birds, we used bird observations as dependent variables, distinguishing between presence and absence. The independent variables were constructed using land cover, elevation, slope, bridges, and river depth data. We utilized the XGBoost (eXtreme Gradient Boosting) model, known for its excellent performance in various fields, to predict the habitat probabilities of 11 bird species. Furthermore, we employed the SHapley Additive exPlanations technique, one of the representative methodologies of XAI, to analyze the relative importance and impact of the variables used in the model. The analysis results showed that in the EDC business district, as one moves closer to the river from the waterfront, the likelihood of bird habitat increases based on the overlapping habitat probabilities of the analyzed bird species. By synthesizing the major variables influencing the habitat of each species, key variables such as rivers, rice fields, fields, pastures, inland wetlands, tidal flats, orchards, cultivated lands, cliffs & rocks, elevation, lakes, and deciduous forests were identified as areas that can serve as habitats, shelters, resting places, and feeding grounds for birds. On the other hand, artificial structures such as bridges, railways, and other public facilities were found to have a negative impact on bird habitat. The development of a management plan for conservation areas based on the objective analysis presented in this study is expected to be extensively utilized in the future. It will provide diverse evidential materials for establishing effective conservation area management strategies.

Change Detection of land-surface Environment in Gongju Areas Using Spatial Relationships between Land-surface Change and Geo-spatial Information (지표변화와 지리공간정보의 연관성 분석을 통한 공주지역 지표환경 변화 분석)

  • Jang Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.296-309
    • /
    • 2005
  • In this study, we investigated the change of future land-surface and relationships of land-surface change with geo-spatial information, using a Bayesian prediction model based on a likelihood ratio function, for analysing the land-surface change of the Gongju area. We classified the land-surface satellite images, and then extracted the changing area using a way of post classification comparison. land-surface information related to the land-surface change is constructed in a GIS environment, and the map of land-surface change prediction is made using the likelihood ratio function. As the results of this study, the thematic maps which definitely influence land-surface change of rural or urban areas are elevation, water system, population density, roads, population moving, the number of establishments, land price, etc. Also, thematic maps which definitely influence the land-surface change of forests areas are elevation, slope, population density, population moving, land price, etc. As a result of land-surface change analysis, center proliferation of old and new downtown is composed near Gum-river, and the downtown area will spread around the local roads and interchange areas in the urban area. In case of agricultural areas, a small tributary of Gum-river or an area of local roads which are attached with adjacent areas showed the high probability of change. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the capability of forest damage is very high. As a result of validation using a prediction rate curve, a capability of prediction of urban area is $80\%$, agriculture area is $55\%$, forest area is $40\%$ in higher $10\%$ of possibility which the land-surface change would occur. This integration model is unsatisfactory to Predict the forest area in the study area and thus as a future work, it is necessary to apply new thematic maps or prediction models In conclusion, we can expect that this way can be one of the most essential land-surface change studies in a few years.