KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.600-616
/
2021
SIMON and SPECK are two families of lightweight block ciphers that have excellent performance on hardware and software platforms. At CRYPTO 2019, Gohr first introduces the differential cryptanalysis based deep learning on round-reduced SPECK32/64, and finally reduces the remaining security of 11-round SPECK32/64 to roughly 38 bits. In this paper, we are committed to evaluating the safety of SIMON cipher under the neural differential cryptanalysis. We firstly prove theoretically that SIMON is a non-Markov cipher, which means that the results based on conventional differential cryptanalysis may be inaccurate. Then we train a residual neural network to get the 7-, 8-, 9-round neural distinguishers for SIMON32/64. To prove the effectiveness for our distinguishers, we perform the distinguishing attack and key-recovery attack against 15-round SIMON32/64. The results show that the real ciphertexts can be distinguished from random ciphertexts with a probability close to 1 only by 28.7 chosen-plaintext pairs. For the key-recovery attack, the correct key was recovered with a success rate of 23%, and the data complexity and computation complexity are as low as 28 and 220.1 respectively. All the results are better than the existing literature. Furthermore, we briefly discussed the effect of different residual network structures on the training results of neural distinguishers. It is hoped that our findings will provide some reference for future research.
Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
/
pp.239-240
/
2012
With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.
OFDMA방식의 무선 다중 접속 시스템의 상향링크에서 기지국으로부터 서로 다른 거리에 있는 각각의 단말들의 시간동기를 위한 적응적 레인징 기법을 제안한다. 제안 기법은 Timing Phase Compensated Frequency Domain Cross-correlation(TPCFDC)와 Frequency Domain Differential Cross-correlation(FDDC)를 동시에 사용함으로써 TPCFDC의 단점인 Round Trip Delay(RTD)의 범위에 따라 증가되는 상관기의 개수를 줄이고 FDDC를 이용하여 반복적인 레인징을 시도함으로써 초기 레인징을 위한 하드웨어 복잡도를 크게 줄일 수 있다. 제안 기법의 성능을 레인징 성공확률과 시도회수 측면에서 모의실험 하였으며 복잡도가 기존에 비해 10배 가량 감소하더라도 기존 방식과 유사한 레인징 성공 확률을 보임을 확인하였다.
개체군은 진화적 단위이자 개체군 통계적 단위로서, 생물학적 침입의 과정은 개체군의 생태적, 진화적 동태에 기인한다. 개체군의 공간구조는 개체군 동태에 영향을 줄 수 있으며, 분산이 반드시 동반되는 생물학적 침입에 대한 연구에서는 공간구조를 고려할 필요가 있다. 메타개체군 이론은 공간구조를 가진 개체군에 대한 대표적인 접근으로, 주로 생태학 및 진화생물학 연구에 활용되고 있다. 메타개체군은 공간적 구조를 가진 개체군의 동의어로 여겨지기도 하지만, 용어의 모호한 사용을 피하기 위해서는 절멸 가능성이 고려되는 경우에 한해 정의되어야 한다는 비판이 있다. 침입 초기 단계의 개체군은 높은 절멸 가능성을 가지는 경우가 많으므로, 메타개체군 이론을 적용하기에 용이하다. 한편, 침입 초기 개체군의 생태적·유전적 특성은 분산의 영향을 크게 받기 때문에, 메타개체군 이론은 개체군 수준에서 침입성의 변화와 침입 가능성을 설명하는 강력한 도구가 될 수 있을 것으로 생각된다. 그러나, 한국에서 침입생물에 대한 생태학적 연구는 주로 종 수준의 분포 변화에 대해 이루어지고 있고, 메타개체군 개념을 적용한 경우가 드문 실정이다. 메타개체군 이론을 활용한다면, 국내 연구가 상대적으로 미진했던 개체군 단위의 침입 기작을 보다 상세히 규명할 수 있을 것으로 생각된다. 본 연구에서는 실제 침입생물에 미치는 메타개체군의 영향을 쉽게 파악하기 위해 침입생물 메타개체군이 자연적인 분산 거리를 넘어서 연결되는지 여부에 따라 장거리와 중거리 두 가지 규모로 나누는 체계를 활용할 것을 제안하였다. 메타개체군 개념에 입각한 침입생물 연구가 침입의 기작을 이해하고 장래의 침입 리스크를 예측·관리하는 데에 도움을 줄 것으로 기대한다.
본 논문에서는 거리 확인 및 공유 키 기반의 challenge-response를 통하여 사용자를 인증하는 인증 시스템을 제안한다. 인증장치는 전파와 초음파 신호의 도달시간의 차를 이용하여 사용자가 소유한 인중토큰이 유효 거리 이내에 있는지 확인하는 동시에, 인증장치가 송신한 challenge에 대해 인증토큰이 키를 기반으로 정확한 응답을 보내는지를 확인한다. 본 논문에서는 이와 같은 인증시스템을 실제로 구현하고 인증장치와 인증토큰의 초음파 센서 방향과 위치의 변화에 따른 인증 성공률을 분석하였다. 실험 결과에 따르면 인증장치와 인증토큰의 방향이 크게 어긋나 있지 않은 상황에서는 대부분 100%에 가까운 인증 성공률을 보임을 확인할 수 있었다.
본 논문은 TDM 방식을 적용한 회선 교환 방식의 WDM 네트워크에서 라우팅, 파장 할당 및 시간슬롯할당의 문제로서, 동적으로 광 경로를 설정하기 위한 분산 제어 프로토콜을 제안하였다. 제안한 분산 제어 프로토콜에서는 블록킹 확률을 줄일 수 있도록 후방 예약 방식을 사용하였다. 예약 실패를 최소화하기 위해 여러 채널을 예약하는 진취적 예약 방법과 단지 하나의 채널을 예약하는 보수적 예약 방법을 적용하여 두개의 방법을 시뮬레이션을 통해 비교하였다. 제안한 분산 프로토콜을 성능 평가하여 WDM/TDM 방식이 WDM 방식보다 성능이 우수함을 보이고 진취적 예약 방법이 적절한 채널 수를 사용할 경우 보수적 예약 방법보다 블록킹 확률을 줄일 수 있음을 보인다.
본 논문에서는 영상 내 물체 영역에 대한 다중정규화와 움직임 색상 정보를 활용하여 이동 물체에 대한 후보 그룹을 추출하고 영상 분할 방법에 의해 대상 물체 영역을 정의하며 최종적으로 목표물체에 대한 검출방법을 제공하였다. 다중 색상변환에 의해 물체의 고유영역 확률을 강화하고 MCWUPC(Moving Color Weighted Unmatched Pixel Count) 연산을 활용하여 이동물체의 영역을 강조하는 두 가지 개념을 결합함으로써 최종적으로 입력 영상 시퀀스에서의 후보영역을 찾아 분할하였으며 매 프레임 정확한 물체의 외곽정보를 검출하였다. 제안된 알고리즘을 검증하기 위하여 이동물체의 이동 실시간이 가능한 시스템을 구축하였고, 다양한 배경을 포함한 실험영상 120 프레임을 처리한 결과 $89\%$ 이상의 추적 성공률을 보여주었다.
HIGHT는 국내에서 개발된 초경량 블록 암호로서, 정보통신단체(TTA) 표준과 국제표준화기구(ISO/IEC) 18033-3 표준으로 제정되었다. 본 논문에서는 블록암호 HIGHT에 대한 차분 오류 주입 공격을 제안한다. 제안하는 공격에서 공격자는 암호화 과정에서 라운드 28의 입력값에 임의의 1-바이트 오류를 주입할 수 있다고 가정한다. 이러한 가정에서 오류 주입을 통해 얻어진 암호문과 정상적으로 얻어진 암호문의 차분 특성을 이용하여 비밀키를 복구한다. 12개의 오류를 주입할 경우에는 88%의 성공 확률, 7개의 오류를 주입하는 경우에는 51%의 성공 확률로 수초내에 HIGHT의 비밀키를 복구한다.
최근 쿼드콥터에 대한 관심이 증가하면서 방송에서 군에 이르기까지 다양한 분야에서 활용되고 있다. 특히 다수의 쿼드콥터를 동시에 제어하는 군집 비행 연구는 중요 임무 수행 성공 확률을 높일 수 있고, 예술과 융합되어 군무를 수행하는 등 다양한 응용에 활용될 수 있다. 본 논문에서는 AR.Drone을 활용하여 실내에서 모션 캡쳐 기반으로 다수의 비행체가 서로의 위치를 파악하고, 시나리오에 맞춰 정해진 임무를 수행하기 위해 개발된 군집 비행 시스템을 소개한다.
투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.