• Title/Summary/Keyword: probability of instability

Search Result 48, Processing Time 0.024 seconds

Optimum Structural Design of Sinusoidal Corrugated Web Beam Using Real-valued Genetic Algorithm (실변수 유전자 알고리즘을 이용한 사인형 주름 웨브 보의 최적구조설계)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.581-593
    • /
    • 2011
  • The underlying advantages of using thin-walled corrugatedwebs instead of plate girders with stiffeners are the elimination of instability problems associated with buckling of the thin-walled flat plate, and elimination of the need for transverse stiffeners, which alsoresults in economic advantages. This paper focuses on two aspects related to the structural design technique forsinusoidal corrugated web steel beams, and the optimum design of the beams using real-value genetic algorithms. The structural design process and design variables used in this optimization werecomposed with EN 1993-1-5, DASt-R015 standard and Pasternak et al. (2004), and the valid design capacity of shear buckling of the standards were compared. For the optimum structural design, the objective function, presented as the fullweight of the sinusoidal corrugated web beams, and the slenderness, member forces, and maximum deflection of the beam, were considered constraints. Finally, the simple beam under the uniform load was adopted as a numerical example, and the effective probability parameters of the genetic operators were considered to find the global minimum point.

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Effect of Fuel/Air Mixing Quality on Temperature Characteristics in a Lean Premixed Model Gas Turbine (희박 예혼합 모형 가스터빈 내에서 연료/공기 혼합정도가 온도 특성에 미치는 영향)

  • Lee Jong Ho;Chang Young June;Jeon Chung Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.274-280
    • /
    • 2005
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor. The objective of this study is to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. To see the effect of incomplete fuel-air mixing on phase-resolved temperature characteristics, CARS temperature measurements were performed. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. It could be found that the profile of mean temperature showed the in-phase relationship with pressure cycle. Temperature PDFs give an insight on the flame behavior as well as NOx emission characteristics. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.

  • PDF

An Attack Origin Detection Mechanism in IP Traceback Using Marking Algorithm (마킹 알고리듬 기반 IP 역추적에서의 공격 근원지 발견 기법)

  • 김병룡;김수덕;김유성;김기창
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • Recently, the number of internet service companies is increasing and so is the number of malicious attackers. Damage such as distrust about credit and instability of the service by these attacks may influence us fatally as it makes companies image failing down. One of the frequent and fatal attacks is DoS(Denial-of-Service). Because the attacker performs IP spoofing for hiding his location in DoS attack it is hard to get an exact location of the attacker from source IP address only. and even if the system recovers from the attack successfully, if attack origin has not been identified, we have to consider the possibility that there may be another attack again in near future by the same attacker. This study suggests to find the attack origin through MAC address marking of the attack origin. It is based on an IP trace algorithm, called Marking Algorithm. It modifies the Martins Algorithm so that we can convey the MAC address of the intervening routers, and as a result it can trace the exact IP address of the original attacker. To improve the detection time, our algorithm also contains a technique to improve the packet arrival rate. By adjusting marking probability according to the distance from the packet origin we were able to decrease the number of needed packets to traceback the IP address.

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

The Effect of Smart Safety and Health Activities on Workers' Intended Behavior (스마트 안전보건활동이 근로자의 의도된 행동에 미치는 영향)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.519-531
    • /
    • 2023
  • With the aim of preventing safety accidents at construction sites, the company aims to create safe behaviors intended through variables called smart safety and health activities to help reduce industrial accidents. Purpose: It analyzes how smart safety and health activities affect accidents caused by unsafe behavior and changes in worker behavior, which is the root cause, and verifies the hypothesis that it helps prevent safety accidents and protect workers' lives. Method: Smart safety and health activities were selected as independent variables (X), and intended safety and anxiety, which are workers' behavioral intentions, were set as dependent variables (Y), attitude and subjective norms, and planned behavioral control as parameters (M). Exploratory factor analysis, discriminant validity analysis, and intensive validity analysis of safety and health activities were used to analyze the scale's reliability and validity. To verify the hypothesis of behavior change, the study was verified through Bayesian model analysis and MC simulation's probability density distribution. Result: It was found that workers who experienced smart safety and health activities at construction sites had the highest analysis of reducing unstable behavior and performing intended safety behavior. The research hypothesis that this will affect changes in worker behavior has been proven, the correlation between variables has been verified in the structural equation and path analysis of the research analysis, and it has been confirmed that smart safety and health activities can control and reduce worker instability. Conclusion: Smart safety and health activities are a very important item to prevent accidents and change workers' behavior at construction sites.