• Title/Summary/Keyword: probability distributions

Search Result 744, Processing Time 0.024 seconds

Quantifying Uncertainty for the Water Balance Analysis (물수지 분석을 위한 불확실성 정량화)

  • Lee, Seung-Uk;Kim, Young-Oh;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.281-292
    • /
    • 2005
  • The water balance analysis for the long-term water resources plan is a simple calculation that compares water demands with possible water supplies. For a watershed being considered the reports on the performance of the water balance analysis, however, have shown inconsistent results and thus have not earned credibility due to the uncertainty of the data acquired and models used. In this research, uncertainties in the water scarcity estimate were assessed through probability representation based on the Monte Carlo simulation using Latin Hypercube Sampling (LHS). The natural flow, municipal demand, industrial demand, agricultural demand, and return flow rate were selected as representative input variables for the water balance analysis, and their distributions were set based on the linear regression and the entropy theory. The statistical properties of the output variable samples were analyzed in comparison with a deterministic estimate of the water scarcity of an existing study. Application of LHS to three sub-basins of the Geum river basin showed the deterministic estimate could be overestimated or underestimated. The sensitivity analysis as well as the uncertainty analysis found that the return flow rate of the agricultural water is the most uncertain but is rarely sensitive to the output of the water balance analysis.

Relationship between fracture distribution and the acidity of mine drainage at the Il-Gwang Mine (일광광산의 절리분포 특성과 광산배수 산성도의 관계)

  • Choi, Jae-Young;Um, Jeong-Gi;Kwon, Hyun-Ho;Shim, Yon-Sik
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.425-436
    • /
    • 2010
  • We established a stochastic 3-D fracture network system for fractured rock masses located in Il-Gwang Mine, Busan, to explore the relationship between the acidity of mine drainage and fracture geometry. A field scanline survey and borehole image processing were performed to estimate the best probability distributions of fracture geometry parameters. The stochastic 3-D fracture network system constructed for the rock masses was validated and deemed to be successful. The 3-D fracture network model was suitable for developing conceptual ideas on fluid flow in fractures at a field experimental site. An injection well and three observation wells were drilled at the field experimental site to monitor the acidity of mine drainage induced by the injection of fresh water. The field experiment, which was run for 29 days, yielded a significant relationship (with a high coefficient of determination) between the fracture geometry parameters and the acidity of mine drainage. The results show that pH increased with increasing relative frequency of fracture strike, and decreased with increasing fracture density. The concentration of $SO^{2-}_4$ decreased with increasing relative frequency of fracture strike, and increased with increasing fracture density.

Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process (수문해석과정의 불확실성을 고려한 수문학적 댐 위험도 해석 기법 개선)

  • Na, Bong-Kil;Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.853-865
    • /
    • 2014
  • Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship need to be established to quantify various uncertainties associated modeling process and inputs. However, the systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, two major innovations are introduced to address this situation. The first is the use of a Hierarchical Bayesian model based regional frequency analysis to better convey uncertainties associated with the parameters of probability density function to the dam risk analysis. The second is the use of Bayesian model coupled HEC-1 rainfall-runoff model to estimate posterior distributions of the model parameters. A reservoir routing analysis with the existing operation rule was performed to convert the inflow scenarios into water surface level scenarios. Performance functions for dam risk model was finally employed to estimate hydrologic dam risk analysis. An application to the Dam in South Korea illustrates how the proposed approach can lead to potentially reliable estimates of dam safety, and an assessment of their sensitivity to the initial water surface level.

On the Small Sample Distribution and its Consistency with the Large Sample Distribution of the Chi-Squared Test Statistic for a Two-Way Contigency Table with Fixed Margins (주변값이 주어진 이원분할표에 대한 카이제곱 검정통계량의 소표본 분포 및 대표본 분포와의 일치성 연구)

  • Park, Cheol-Yong;Choi, Jae-Sung;Kim, Yong-Gon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • The chi-squared test statistic is usually employed for testing independence of two categorical variables in a two-way contingency table. It is well known that, under independence, the test statistic has an asymptotic chi-squared distribution under multinomial or product-multinomial models. For the case where both margins fixed, the sampling model of the contingency table is a multiple hypergeometric distribution and the chi-squared test statistic follows the same limiting distribution. In this paper, we study the difference between the small sample and large sample distributions of the chi-squared test statistic for the case with fixed margins. For a few small sample cases, the exact small sample distribution of the test statistic is directly computed. For a few large sample sizes, the small sample distribution of the statistic is generated via a Monte Carlo algorithm, and then is compared with the large sample distribution via chi-squared probability plots and Kolmogorov-Smirnov tests.

  • PDF

Future Projection of Changes in Extreme Temperatures using High Resolution Regional Climate Change Scenario in the Republic of Korea (고해상도 지역기후변화 시나리오를 이용한 한국의 미래 기온극값 변화 전망)

  • Lee, Kyoung-Mi;Baek, Hee-Jeong;Park, Su-Hee;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.208-225
    • /
    • 2012
  • The spatial characteristics of changes in extreme temperature indices for 2070-2099 relative to 1971-2000 in the Republic of Korea were investigated using daily maximum (Tmax) and minimum (Tmin) temperature data from a regional climate model (HadGEM3-RA) based on the IPCC RCP4.5/8.5 at 12.5km grid spacing and observations. Six temperature-based indices were selected to consider the frequency and intensity of extreme temperature events. For validation during the reference period (1971-2000), the simulated Tmax and Tmin distributions reasonably reproduce annual and seasonal characteristics not only for the relative probability but also the variation range. In the future (2070-2099), the occurrence of summer days (SD) and tropical nights (TR) is projected to be more frequent in the entire region while the occurrence of ice days (ID) and frost days (FD) is likely to decrease. The increase of averaged Tmax above 95th percentile (TX95) and Tmin below 5th percentile (TN5) is also projected. These changes are more pronounced under RCP8.5 scenario than RCP4.5. The changes in extreme temperature indices except for FD show significant correlations with altitude, and the changes in ID, TR, and TN5 also show significant correlations with latitude. The mountainous regions are projected to be more influenced by an increase of low extreme temperature than low altitude while the southern coast is likely to be more influenced by an increase of tropical nights.

  • PDF

Connection between the Amplitude Variations of the GPS Radio Occultation Signals and Solar Activity

  • Pavelyev, A.G.;Liou, Y.A.;Wickert, J.;Pavelyev, A.A.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.348-357
    • /
    • 2008
  • The classification of the effect of ionospheric disturbances on the radio occultation signal amplitude has been introduced based on an analysis of more than 2000 seances of radio occultation measurements per formed with the help of the CHAMP German satellite. The dependence of the histograms of variations in the radio occultation signal amplitude on the IMF variation index has been revealed. It has been indicated that it is possible to introduce the radio occultation index characterizing the relation between ionospheric disturbances and solar activity. An amplitude radio occultation (RO) method is proposed to study connection between the ionospheric and solar activity on a global scale. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and depend on solar activity. The probability of strong RO amplitude variations (RO $S_4$ index greater than 0.2) in the CHAMP RO signals diminishes sharply with the weakening of solar activity from 2001 to 2008. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily globally averaged RO $S_{4a}$ index depends essentially on solar activity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavoir of $S_{4a}$ index has been detected for polar (with latitude greater than $60^{\circ}$) and low latitude (moderate and equatorial) regions. For polar regions $S_{4a}$ index is slowly decreasing with solar activity. In the low latitude areas $S_{4a}$ index is sharply oscillating, depending on the solar ultraviolet emission variations. The different geographical behavoir of $S_{4a}$ index indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Therefore, the $S_{4a}$ index of RO signal is important radio physical indicator of solar activity.

  • PDF

Statistical Calibration and Validation of Mathematical Model to Predict Motion of Paper Helicopter (종이 헬리콥터 낙하해석모델의 통계적 교정 및 검증)

  • Kim, Gil Young;Yoo, Sung Bum;Kim, Dong Young;Kim, Dong Seong;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.751-758
    • /
    • 2015
  • Mathematical models are actively used to reduce the experimental expenses required to understand physical phenomena. However, they are different from real phenomena because of assumptions or uncertain parameters. In this study, we present a calibration and validation method using a paper helicopter and statistical methods to quantify the uncertainty. The data from the experiment using three nominally identical paper helicopters consist of different groups, and are used to calibrate the drag coefficient, which is an unknown input parameter in both analytical models. We predict the predicted fall time data using probability distributions. We validate the analysis models by comparing the predicted distribution and the experimental data distribution. Moreover, we quantify the uncertainty using the Markov Chain Monte Carlo method. In addition, we compare the manufacturing error and experimental error obtained from the fall-time data using Analysis of Variance. As a result, all of the paper helicopters are treated as one identical model.

Estimating design floods for ungauged basins in the geum-river basin through regional flood frequency analysis using L-moments method (L-모멘트법을 이용한 지역홍수빈도분석을 통한 금강유역 미계측 유역의 설계홍수량 산정)

  • Lee, Jin-Young;Park, Dong-Hyeok;Shin, Ji-Yae;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.645-656
    • /
    • 2016
  • The study performed a regional flood frequency analysis and proposed a regression equation to estimate design floods corresponding to return periods for ungauged basins in Geum-river basin. Five preliminary tests were employed to investigate hydrological independence and homogeneity of streamflow data, i.e. the lag-one autocorrelation test, time homogeneity test, Grubbs-Beck outlier test, discordancy measure test ($D_i$), and regional homogeneity measure (H). The test results showed that streamflow data were time-independent, discordant and homogeneous within the basin. Using five probability distributions (generalized extreme value (GEV), three-parameter log-normal (LN-III), Pearson type 3 (P-III), generalized logistic (GLO), generalized Pareto (GPA)), comparative regional flood frequency analyses were carried out for the region. Based on the L-moment ratio diagram, average weighted distance (AWD) and goodness-of-fit statistics ($Z^{DIST}$), the GLO distribution was selected as the best fit model for Geum-river basin. Using the GLO, a regression equation was developed for estimating regional design floods, and validated by comparing the estimated and observed streamflows at the Ganggyeong station.

Health Risk Assessment of Disinfection By-products by Chlorination in Tap Water Ingestion (수도수중 염소 소독부산물로 인한 건강위해성 평가에 관한 연구 - 서울시 수도수중 Trihalomethanes 및 Haloaceticnitriles을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Yang, Ji-Yeon;Park, Yeon-Shin;Kim, Jun-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.31-41
    • /
    • 1997
  • Public concerns about hazardous health effect from the exposure to organic by-products of the chlorination have been increased. There are numerous studies reporting that chlorination of drinking water produces numerous chlorinated organic by-products including THMs, HAAs, HANs. Some of these products are known to be animal carcinogens. The purpose of this study was to estimate health risk of DBPs by chlorinated drinking water ingestion in Seoul based on methodologies that have been developed for conducting risk assessment of complex-chemical-mixture. The drinking water sample was collected seperately at six water treatment plant in Seoul at March, April, 1996. In tap water of households in Seoul, DBPs were measured wilfh the mean value of 36.6 $\mu$g/L. Risk assessment processes,. which include processes for the estimation of human cancer potency using animal bioassay data and calculation of human exposure, entail uncertainties. In the exposure assessment process, exposure scenarios with various assumptions could affect the exposure amount and excess cancer risk. The reference dose of haloacetonitriles was estimated to be 0.0023 mg/kg/day by applying dibromoacetonitrile NOAEL and uncertainty factor to the mean concentration. In the first case, human excess cancer risk was estimated by the US EPA method used to set the MCL (maximum contaminant level). In the second and third case, the risk was estimated for multi-route exposure with and without adopting Monte-Carlo simulation, respectively. In the second case, exposure input parameters and cancer potencies used probability distributions, and in the third case, those values used point estimates (mean, and maximum or 95% upper-bound value). As a result, while the excess cancer risk estimated by US EPA method considering only direct ingestion tended to be underestimated, the risk which was estimated by considering multi-route exposure without Monte-Carlo simulation and then using the maximum or 95% upper-bound value as input parameters tended to be overestimated. In risk assessment for Trihalomethanes, considering multi-route exposure with adopting Monte-Carlo analysis seems to provide the most reasonable estimations.

  • PDF

On the Study of Developement for Urban Meteorological Service Technology (도시기상서비스 기술 개발에 관한 연구)

  • Choi, Young-Jean;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Urbanization of the world's population has given rise to more than 450 cities around the world with populations in excess of 1 million (megacity) and more than 25 so-called metacities with populations over 10 million (Brinkhoff, 2010). The United States today has a total resident population of more than 308,500,000 people, with 81 percent residing in cities and suburbs as of mid - 2005 (UN, 2008). Urban meteorology is the study of the physics, dynamics, and chemistry of the interactions of Earth's atmosphere and the urban built environment, and the provision of meteorological services to the populations and institutions of metropolitan areas. While the details of such services are dependent on the location and the synoptic climatology of each city, there are common themes, such as enhancing quality of life and responding to emergencies. Experience elsewhere (e.g., Shanghai, Helsinki, Tokyo, Seoul, etc.) shows urban meteorological support is a key part of an integrated or multi-hazard warning system that considers the full range of environmental challenges and provides a unified response from municipal leaders. Urban meteorology has come to require much more than observing and forecasting the weather of our cities and metropolitan areas. Forecast improvement as a function of more and better observations of various kinds and as a function of model resolution, larger ensembles, predicted probability distributions; Responses of emergency managers, government officials, and users to improved and probabilistic forecasts; Benefits of improved forecasts in reduction of loss of life, property damage, and other adverse effects. A national initiative to enhance urban meteorological services is a high-priority need for a wide variety of stakeholders, including the general, commerce and industry, and all levels of government. Some of the activities of such an initiative include: conducting basic research and development; prototyping and other activities to enable very--short and short range predictions; supporting and improving productivity and efficiency in commercial and industrial sectors; and urban planning for long term sustainability. In addition urban test-beds are an effective means for developing, testing, and fostering the necessary basic and applied meteorological and socioeconomic research, and transitioning research findings to operations. An extended, multi-year period of continuous effort, punctuated with intensive observing and forecasting periods, is envisioned.