• Title/Summary/Keyword: probability distributions

Search Result 744, Processing Time 0.022 seconds

Regional Frequency Analysis for Rainfall using L-Moment (L-모멘트법에 의한 강우의 지역빈도분석)

  • Koh, Deuk-Koo;Choo, Tai-Ho;Maeng, Seung-Jin;Trivedi, Chanda
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • This study was conducted to derive the optimal regionalization of the precipitation data which can be classified on the basis of climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. A total of 65 rain gauges were used to regional analysis of precipitation. Annual maximum series for the consecutive durations of 1, 3, 6, 12, 24, 36, 48 and 72hr were used for various statistical analyses. K-means clustering mettled is used to identify homogeneous regions all over the regions. Five homogeneous regions for the precipitation were classified by the K-means clustering. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the generalized extreme value (GEV) distribution among applied distributions. The regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Application of Rainfall Runoff Model with Rainfall Uncertainty (강우자료의 불확실성을 고려한 강우 유출 모형의 적용)

  • Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.773-783
    • /
    • 2009
  • The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.

Black Hispanic and Black Non-Hispanic Breast Cancer Survival Data Analysis with Half-normal Model Application

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Vera, Veronica;Abdool-Ghany, Faheema;Gabbidon, Kemesha;Perea, Nancy;Stewart, Tiffanie Shauna-Jeanne;Ramamoorthy, Venkataraghavan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9453-9458
    • /
    • 2014
  • Background: Breast cancer is the second leading cause of cancer death for women in the United States. Differences in survival of breast cancer have been noted among racial and ethnic groups, but the reasons for these disparities remain unclear. This study presents the characteristics and the survival curve of two racial and ethnic groups and evaluates the effects of race on survival times by measuring the lifetime data-based half-normal model. Materials and Methods: The distributions among racial and ethnic groups are compared using female breast cancer patients from nine states in the country all taken from the National Cancer Institute's Surveillance, Epidemiology, and End Results cancer registry. The main end points observed are: age at diagnosis, survival time in months, and marital status. The right skewed half-normal statistical probability model is used to show the differences in the survival times between black Hispanic (BH) and black non-Hispanic (BNH) female breast cancer patients. The Kaplan-Meier and Cox proportional hazard ratio are used to estimate and compare the relative risk of death in two minority groups, BH and BNH. Results: A probability random sample method was used to select representative samples from BNH and BH female breast cancer patients, who were diagnosed during the years of 1973-2009 in the United States. The sample contained 1,000 BNH and 298 BH female breast cancer patients. The median age at diagnosis was 57.75 years among BNH and 54.11 years among BH. The results of the half-normal model showed that the survival times formed positive skewed models with higher variability in BNH compared with BH. The Kaplan-Meir estimate was used to plot the survival curves for cancer patients; this test was positively skewed. The Kaplan-Meier and Cox proportional hazard ratio for survival analysis showed that BNH had a significantly longer survival time as compared to BH which is consistent with the results of the half-normal model. Conclusions: The findings with the proposed model strategy will assist in the healthcare field to measure future outcomes for BH and BNH, given their past history and conditions. These findings may provide an enhanced and improved outlook for the diagnosis and treatment of breast cancer patients in the United States.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level (초기 변동수위를 고려한 제방 월류에 따른 안정성 분석)

  • Kim, Jin-Young;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.51-62
    • /
    • 2015
  • It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

Changes in Potential Distribution of Pinus rigida Caused by Climate Changes in Korea (기후변화에 따른 리기다소나무림의 잠재 생육적지 분포 변화 예측)

  • Kim, Yong-Kyung;Lee, Woo-Kyun;Kim, Young-Hwan;Oh, Suhyun;Heo, Jun-Hyeok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.509-516
    • /
    • 2012
  • In this research, it was intended to examine the vulnerability of Pinus rigida to climate changes, a major planting species in Korea. For this purpose, the distribution of Pinus rigida and its changes caused by climate changes were estimated based on the 'A1B' climate change scenario suggested by IPCC. Current distribution of Pinus rigida was analyzed by using the $4^{th}$Forest Type Map and its potential distribution in the recent year (2000), the near future (2050) and the further future (2100) were estimated by analyzing the optimized ranges of three climate indices - warmth index(WI), minimum temperature index of the coldest month (MTCI) and precipitation effectiveness index(PEI). The results showed that the estimated potential distribution of Pinus rigida declines to 56% in the near future(2050) and 15% in the further future (2100). This significant decline was found in most provinces in Korea. However, in Kangwon province where the average elevation is higher than other provinces, the area of potential distribution of Pinus rigida increases in the near future and the further future. Also the result indicated that the potential distribution of Pinus rigida migrates to higher elevation. The potential distributions estimated in this research have relatively high accuracy with consideration of classification accuracy (44.75%) and prediction probability (62.56%).

Estimating Cumulative Distribution Functions with Maximum Likelihood to Sample Data Sets of a Sea Floater Model (해상 부유체 모델의 표본 데이터에 대해서 최대우도를 갖는 누적분포함수 추정)

  • Yim, Jeong-Bin;Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.453-461
    • /
    • 2013
  • This paper describes evaluation procedures and experimental results for the estimation of Cumulative Distribution Functions (CDF) giving best-fit to the sample data in the Probability based risk Evaluation Techniques (PET) which is to assess the risks of a small-sized sea floater. The CDF in the PET is to provide the reference values of risk acceptance criteria which are to evaluate the risk level of the floater and, it can be estimated from sample data sets of motion response functions such as Roll, Pitch and Heave in the floater model. Using Maximum Likelihood Estimates and with the eight kinds of regulated distribution functions, the evaluation tests for the CDF having maximum likelihood to the sample data are carried out in this work. Throughout goodness-of-fit tests to the distribution functions, it is shown that the Beta distribution is best-fit to the Roll and Pitch sample data with smallest averaged probability errors $\bar{\delta}(0{\leq}\bar{\delta}{\leq}1.0)$ of 0.024 and 0.022, respectively and, Gamma distribution is best-fit to the Heave sample data with smallest $\bar{\delta}$ of 0.027. The proposed method in this paper can be expected to adopt in various application areas estimating best-fit distributions to the sample data.

Statistical Characteristics of Hourly Tidal Levels around the Korean Peninsula (한반도 연안 1시간 조위자료의 통계적 특성)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hongyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.365-373
    • /
    • 2013
  • Representative tidal gauging (TG) stations are selected to cover the tidal characteristics of the Korean peninsula coastal seas, and the statistical parameters of the data are analysed from the perspective of the probability distribution at that TG station. The shape of the distribution in the Incheon and Gunsan TG stations, which are tide-dominated areas, shows two clear modes at HWONT and LWONT in the distributions, and in the Mokpo station, shows an asymmetric double peak distribution. In contrast, the frequency distribution shape shows a smoothed flat peak in the Jeju, Yeosu and Busan TG stations, and a single peak in the Pohang and Sokcho TG stations. The emersion and submersion equations suggested as the 6-parameter Gaussian mixture models in this study are accurate, and well fitted to the observed tidal elevation data. The ${\mu}_1$, ${\mu}_2$ parameters are highly correlated to the LWONT and HWONT, and the ${\sigma}_1$ and ${\sigma}_2$ parameters are also closely correlated to the mean tidal range. The ${\mu}_1$ and ${\mu}_2$ parameters coincide with the modes of the suggested probability distribution of the hourly tidal level data.

Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information (기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.339-350
    • /
    • 2011
  • This study developed a climate informed Bayesian nonstationary frequency model which allows us to forecast seasonal summer rainfall at Nakdong River. We constructed a 37-year summer rainfall data set from 10 weather stations within Nakdong river basin, and two climate indices from sea surface temperature (SST) and outgoing longwave radiation (OLR) were derived through correlation analysis. The selected SST and OLR have been widely acknowledged as a climate driver for summer rainfall. The developed model was applied first to the 2010-year summer rainfall (888.1 mm) in order to assure ourself. We demonstrated model performance by comparing posterior distributions. It was confirmed that the proposed model is able to produce a reasonable forecast. The forecasted value is about 858.2 mm, and the difference between forecast and observation is about 30 mm. As the second case study, 2011-year summer rainfall forecast was made using an observed winter SSTs and an assumed 50% value of OLRs. The forecasted value is 967.7 mm and associated exceedance probability over average summer rainfall 680 mm is 92.9%. In addition, 50-year return period for summer rainfall was projected through the nonstationary frequency model. An exceedance probability over 1,400 mm corresponding to the 50-year return level is about 73.7%.