• Title/Summary/Keyword: probability distribution function

Search Result 804, Processing Time 0.024 seconds

The Comparison of Basic Science Research Capacity of OECD Countries

  • Lim, Yang-Taek;Song, Choong-Han
    • Journal of Technology Innovation
    • /
    • v.11 no.1
    • /
    • pp.147-176
    • /
    • 2003
  • This Paper Presents a new measurement technique to derive the level of BSRC (Basic Science and Research Capacity) index by use of the factor analysis which is extended with the assumption of the standard normal probability distribution of the selected explanatory variables. The new measurement method is used to forecast the gap of Korea's BSRC level compared with those of major OECD countries in terms of time lag and to make their international comparison during the time period of 1981∼1999, based on the assumption that the BSRC progress function of each country takes the form of the logistic curve. The US BSRC index is estimated to be 0.9878 in 1981, 0.9996 in 1990 and 0.99991 in 1999, taking the 1st place. The US BSRC level has been consistently the top among the 16 selected variables, followed by Japan, Germany, France and the United Kingdom, in order. Korea's BSRC is estimated to be 0.2293 in 1981, taking the lowest place among the 16 OECD countries. However, Korea's BSRC indices are estimated to have been increased to 0.3216 (in 1990) and 0.44652 (in 1999) respectively, taking 10th place. Meanwhile, Korea's BSRC level in 1999 (0.44652) is estimated to reach those of the US and Japan in 2233 and 2101, respectively. This means that Korea falls 234 years behind USA and 102 years behind Japan, respectively. Korea is also estimated to lag 34 years behind Germany, 16 years behind France and the UK, 15 years behind Sweden, 11 years behind Canada, 7 years behind Finland, and 5 years behind the Netherlands. For the period of 1981∼1999, the BSRC development speed of the US is estimated to be 0.29700. Its rank is the top among the selected OECD countries, followed by Japan (0.12800), Korea (0.04443), and Germany (0.04029). the US BSRC development speed (0.2970) is estimated to be 2.3 times higher than that of Japan (0.1280), and 6.7 times higher than that of Korea. German BSRC development speed (0.04029) is estimated to be fastest in Europe, but it is 7.4 times slower than that of the US. The estimated BSRC development speeds of Belgium, Finland, Italy, Denmark and the UK stand between 0.01 and 0.02, which are very slow. Particularly, the BSRC development speed of Spain is estimated to be minus 0.0065, staying at the almost same level of BSRC over time (1981 ∼ 1999). Since Korea shows BSRC development speed much slower than those of the US and Japan but relative]y faster than those of other countries, the gaps in BSRC level between Korea and the other countries may get considerably narrower or even Korea will surpass possibly several countries in BSRC level, as time goes by. Korea's BSRC level had taken 10th place till 1993. However, it is estimated to be 6th place in 2010 by catching up the UK, Sweden, Finland and Holland, and 4th place in 2020 by catching up France and Canada. The empirical results are consistent with OECD (2001a)'s computation that Korea had the highest R&D expenditures growth during 1991∼1999 among all OECD countries ; and the value-added of ICT industries in total business sectors value added is 12% in Korea, but only 8% in Japan. And OECD (2001b) observed that Korea, together with the US, Sweden, and Finland, are already the four most knowledge-based countries. Hence, the rank of the knowledge-based country was measured by investment in knowledge which is defined as public and private spending on higher education, expenditures on R&D and investment in software.

  • PDF

Underpricing of Initial Offerings and the Efficiency of Investments (신주(新株)의 저가상장현상(低價上場現象)과 투자(投資)의 효율성(效率成)에 대한 연구(硏究))

  • Nam, Il-chong
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.95-120
    • /
    • 1990
  • The underpricing of new shares of a firm that are offered to the public for the first time (initial offerings) is well known and has puzzled financial economists for a long time since it seems at odds with the optimal behavior of the owners of issuing firms. Past attempts by financial economists to explain this phenomenon have not been successful in the sense that the explanations given by them are either inconsistent with the equilibrium theory or implausible. Approaches by such authors as Welch or Allen and Faulhaber are no exceptions. In this paper, we develop a signalling model of capital investment to explain the underpricing phenomenon and also analyze the efficiency of investment. The model focuses on the information asymmetry between the owners of issuing firms and general investors. We consider a firm that has been owned and operated by a single owner and that has a profitable project but has no capital to develop it. The profit from the project depends on the capital invested in the project as well as a profitability parameter. The model also assumes that the financial market is represented by a single investor who maximizes the expected wealth. The owner has superior information as to the value of the firm to investors in the sense that it knows the true value of the parameter while investors have only a probability distribution about the parameter. The owner offers the representative investor a fraction of the ownership of the firm in return for a certain amount of investment in the firm. This offer condition is equivalent to the usual offer condition consisting of the number of issues to sell and the unit price of a share. Thus, the model is a signalling game. Using Kreps' criterion as the solution concept, we obtained an essentially unique separating equilibrium offer condition. Analysis of this separating equilibrium shows that the owner of the firm with high profitability chooses an offer condition that raises an amount of capital that is short of the amount that maximizes the potential profit from the project. It also reveals that the fraction of the ownership of the firm that the representative investor receives from the owner of the highly profitable firm in return for its investment has a value that exceeds the investment. In other words, the initial offering in the model is underpriced when the profitability of the firm is high. The source of underpricing and underinvestment is the signalling activity by the owner of the highly profitable firm who attempts to convince investors that his firm has a highly profitable project by choosing an offer condition that cannot be imitated by the owner of a firm with low profitability. Thus, we obtained two main results. First, underpricing is a result of a signalling activity by the owner of a firm with high profitability when there exists information asymmetry between the owner of the issuing firm and investors. Second, such information asymmetry also leads to underinvestment in a highly profitable project. Those results clearly show the underpricing entails underinvestment and that information asymmetry leads to a social cost as well as a private cost. The above results are quite general in the sense that they are based upon a neoclassical profit function and full rationality of economic agents. We believe that the results of this paper can be used as a basis for further research on the capital investment process. For instance, one can view the results of this paper as a subgame equilibrium in a larger game in which a firm chooses among diverse ways to raise capital. In addition, the method used in this paper can be used in analyzing a wide range of problems arising from information asymmetry that the Korean financial market faces.

  • PDF

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF