• Title/Summary/Keyword: probabilistic-based algorithm

Search Result 293, Processing Time 0.022 seconds

A partially occluded object recognition technique using a probabilistic analysis in the feature space (특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구)

  • 박보건;이경무;이상욱;이진학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1946-1956
    • /
    • 2001
  • In this paper, we propose a novel 2-D partial matching algorithm based on model-based stochastic analysis of feature correspondences in a relation vector space, which is quite robust to shape variations as well as invariant to geometric transformations. We represent an object using the ARG (Attributed Relational Graph) model with features of a set of relation vectors. In addition, we statistically model the partial occlusion or noise as the distortion of the relation vector distribution in the relation vector space. Our partial matching algorithm consists of two-phases. First, a finite number of candidate sets areselected by using logical constraint embedding local and structural consistency Second, the feature loss detection is done iteratively by error detection and voting scheme thorough the error analysis of relation vector space. Experimental results on real images demonstrate that the proposed algorithm is quite robust to noise and localize target objects correctly even inseverely noisy and occluded scenes.

  • PDF

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

The Color Juxtaposition of Pointillism Based on Real-Works Analysis (실제 작품의 분석을 통한 점묘화의 색상병치)

  • Seo, Sang-Hyun;Yoon, Kyung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • In this paper, we proposes a method that analyzes the characteristics and patterns of color juxtaposition based on the color wheel used by pointillism painter and an algorithm that generates pointillistic images by applying obtained analysis data. In order to analyze color juxtaposition of pointillism, we extract the stroke colors of real painting and find the most similar probability density functions(PDFs) through applying good-of-fit tests for the probabilistic distribution of stroke colors. By performing the juxtaposition of color based on the found PDFs, we can convert input image to pointillistic image effectively. It can be seen that this study shows reliability in the use of data obtained from actual paintings and that leads to perform a reasonable work.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

Research on improvement of target tracking performance of LM-IPDAF through improvement of clutter density estimation method (클러터밀도 추정 방법 개선을 통한 LM-IPDAF의 표적 추적 성능 향상 연구)

  • Yoo, In-Je;Park, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.99-110
    • /
    • 2017
  • Improving tracking performance by estimating the status of multiple targets using radar is important. In a clutter environment, a joint event occurs between the track and measurement in multiple target tracking using a tracking filter. As the number increases, the joint event increases exponentially. The problem to be considered when multiple target tracking filter design in such environments is that first, the tracking filter minimizes the rate of false track alarmsby eliminating the false track and quickly confirming the target track. The purpose is to increase the FTD performance. The second consideration is to improve the track maintenance performance by allocating each measurement to a track efficiently when an event occurs. Through two considerations, a single target tracking data association technique is extended to a multiple target tracking filter, and representative algorithms are JIPDAF and LM-IPDAF. In this study, a probabilistic evaluation of many hypotheses in the assignment of measurements was not performed, so that the computation amount does not increase nonlinearly according to the number of measurements and tracks, and the track existence probability based on the track density The LM-IPDAF algorithm was introduced. This paper also proposes a method to reduce the computational complexity by improving the clutter density estimation method for calculating the track existence probability of LM-IPDAF. The performance was verified by a comparison with the existing algorithm through simulation. As a result, it was possible to reduce the simulation processing time by approximately 20% while achieving equivalent performance on the position RMSE and Confirmed True Track.

Differentially Private k-Means Clustering based on Dynamic Space Partitioning using a Quad-Tree (쿼드 트리를 이용한 동적 공간 분할 기반 차분 프라이버시 k-평균 클러스터링 알고리즘)

  • Goo, Hanjun;Jung, Woohwan;Oh, Seongwoong;Kwon, Suyong;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.288-293
    • /
    • 2018
  • There have recently been several studies investigating how to apply a privacy preserving technique to publish data. Differential privacy can protect personal information regardless of an attacker's background knowledge by adding probabilistic noise to the original data. To perform differentially private k-means clustering, the existing algorithm builds a differentially private histogram and performs the k-means clustering. Since it constructs an equi-width histogram without considering the distribution of data, there are many buckets to which noise should be added. We propose a k-means clustering algorithm using a quad-tree that captures the distribution of data by using a small number of buckets. Our experiments show that the proposed algorithm shows better performance than the existing algorithm.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Voice Personality Transformation Using a Probabilistic Method (확률적 방법을 이용한 음성 개성 변환)

  • Lee Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.150-159
    • /
    • 2005
  • This paper addresses a voice personality transformation algorithm which makes one person's voices sound as if another person's voices. In the proposed method, one person's voices are represented by LPC cepstrum, pitch period and speaking rate, the appropriate transformation rules for each Parameter are constructed. The Gaussian Mixture Model (GMM) is used to model one speaker's LPC cepstrums and conditional probability is used to model the relationship between two speaker's LPC cepstrums. To obtain the parameters representing each probabilistic model. a Maximum Likelihood (ML) estimation method is employed. The transformed LPC cepstrums are obtained by using a Minimum Mean Square Error (MMSE) criterion. Pitch period and speaking rate are used as the parameters for prosody transformation, which is implemented by using the ratio of the average values. The proposed method reveals the superior performance to the previous VQ-based method in subjective measures including average cepstrum distance reduction ratio and likelihood increasing ratio. In subjective test. we obtained almost the same correct identification ratio as the previous method and we also confirmed that high qualify transformed speech is obtained, which is due to the smoothly evolving spectral contours over time.

Speaker Recognition Performance Improvement by Voiced/Unvoiced Classification and Heterogeneous Feature Combination (유/무성음 구분 및 이종적 특징 파라미터 결합을 이용한 화자인식 성능 개선)

  • Kang, Jihoon;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1294-1301
    • /
    • 2014
  • In this paper, separate probabilistic distribution models for voiced and unvoiced speech are estimated and utilized to improve speaker recognition performance. Also, in addition to the conventional mel-frequency cepstral coefficient, skewness, kurtosis, and harmonic-to-noise ratio are extracted and used for voiced speech intervals. Two kinds of scores for voiced and unvoiced speech are linearly fused with the optimal weight found by exhaustive search. The performance of the proposed speaker recognizer is compared with that of the conventional recognizer which uses mel-frequency cepstral coefficient and a unified probabilistic distribution function based on the Gassian mixture model. Experimental results show that the lower the number of Gaussian mixture, the greater the performance improvement by the proposed algorithm.

Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea (우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발)

  • Lee, Yeon-Chan;Lim, Jin-Taek;Oh, Ung-Jin;N.Do, Duy-Phuong;Choi, Jae-Seok;Kim, Jin-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.