본 논문에서는 다층 연결 구조(Multistage Interconnection Network, MIN)를 기반으로 하는 병렬 컴퓨터 환경에서 효과적으로 운용할 수 있는 병렬 Optimal Best-First search Branch-and-Bound 알고리즘(pobs)을 제안하고, 성능을 분석하였다. 제안된 알고리즘은 먼저 해를 얻고자 하는 문제를 임의의 G개 부 문제로 분할하고 소수 프로세서로 구성된 프로세서 그룹들에 할당하여 각각의 지역 해를 산출하도록 하였다. 따라서 N개의 프로세서를 갖는 시스템은 G개 프로세서 그룹으로 구분되고 각 프로세서 그룹은 P(=N/G)개 프로세서를 보유하게 된다. 각 프로세서 그룹은 할당된 부 문제의 지역 해를 얻는 과정에 병렬 sub-Global Best-First B&B 알고리즘을 수행한다. 프로세서 그룹들이 산출한 지역 해들 가운데 최선의 값을 갖는 지역 해가 문제의 전역 해로 결정되는데, 이를 위하여 각 프로세서 그룹의 대표 프로세서는 할당된 부 문제의 지역 해를 다른 그룹들에게 전파하도록 하였다. 지역 해 전파는 프로세서 그룹들의 지역 해 비교를 통한 전역해 선정 기능과 함께 프로세서 그룹간 작업 불균형 문제를 상당 부분 해소하는 효과를 제공한다. 알고리즘 설계에 이어 성능 평가를 위한 분석 모형을 제시하였다. 제안한 모형은 B&B 알고리즘 수행에 따른 연산 소요시간과 통신 소요시간을 분리하여 처리함으로 병렬 처리 환경에서 보다 실질적인 알고리즘 성능 평가가 가능하게 함과 동시에, 다양한 컴퓨터 연결 구조에서의 알고리즘 성능 예측을 용이하게 하였다. B&B 알고리즘의 확률 특성을 토대로 작성된 성능 분석 연구의 실효성 검토를 위하여 MIN 기반 시스템을 대상으로 병행된 시뮬레이션 결과는 상호 미세한 오차 범위 내에서 일치하는 결과를 보여 제시한 성능 분석 기법의 타당성을 입증하였다. 또한, 본 논문에서 제안한 병렬 알고리즘을 MIN 기반 시스템에 적용하여 기존 알고리즘의 성능과 비교 평가 결과 제안한 pobs가 문제 해결 과정에서 전개되는 부 문제 수를 줄이고 프로세서간의 효율적인 작업 분배 효과를 제공하는 한편 프로세서간의 주된 통신 활동 범위를 국부적으로 제한하여 성능면에서 우수함을 입증하였다.
The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.
The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
무선 애드 혹 네트워크에서는 제한된 무선 자원을 효율적으로 이용하여 신속하게 패킷을 전송하는 것이 중요하다. 따라서 애드 혹 네트워크에서는 여러 가지 패킷 전송 방법 중 패킷 수신을 원하는 모든 노드에 짧은 지연 시간을 보장하여 소스 노드로부터 신속하게 패킷을 수신할 수 있는 플러딩(flooding)을 통한 패킷 전송 기법이 유용하게 쓰인다. 플러딩이란 통신 가능한 모든 노드에 패킷을 브로드캐스팅 하는 패킷 전달의 한 방식으로서, 수신한 패킷을 다시 전송하되 그 패킷을 한번이라도 전송한 경우에는 다시 전송하지 않는다. 기본적으로 플러딩은 전송할 패킷에 전송 단말의 주소와 시퀀스 번호만 기록하여 전송함으로서, 구현이 단순하고 토폴로지의 변화에 적응이 빠른 장점이 있다. 하지만 플러딩은 모든 단말이 최소 한번은 패킷 전송을 수행하기 때문에 과도한 트래픽이 발생하는 단점을 가진다. 이러한 단점을 해결하기 위해 노드의 위치 정보에 기반하거나 전송할 확률에 기반하여 패킷의 중복된 송수신을 억제하는 플러딩 기법이 다방면으로 연구되었다. 그러나 적은 트래픽과 짧은 지연 시간을 동시에 보장하는 것은 쉽지 않으며 여전히 해결과제로 남아있는 사항이다. 본 논문에서는 패킷을 수신한 노드가 자신의 주위 노드 중 패킷의 전송 방향에 대해 한 개의 노드에 전송 우선순위를 할당하고, 우선순위를 가진 노드가 패킷을 수신하면 지체 없이 패킷을 전달하도록 하여 지연 시간을 최소화시킬 수 있는 플러딩 기법을 제안한다. 또한 노드의 위치정보를 이용하여 동일한 패킷을 수신한 노드를 탐색하고 중복된 패킷의 송수신은 억제할 수 있는 새로운 방식의 플러딩 알고리즘을 제안한다. 그리고 시뮬레이션을 이용하여 제안한 알고리즘과 기존의 플러딩 기법들의 성능을 비교하고, 그 결과 제안한 알고리즘이 기존의 플러딩 방식보다 더 적은 패킷 전송 횟수로 신속하게 패킷을 전달할 수 있음을 보인다.
기존의 확률론적 안전성 평가의 신뢰도 제고를 위하여 잘 알려진 입력 파라미터의 일반적인 분포에 새롭게 측정된 신뢰도 있는 데이터를 결합하여 사후분포를 구할 수 있는 베이지안 업데이팅 방법론을 제안하였다. 마코프체인 몬테 칼로 샘플링 기법의 알고리듬을 통한 GoldSim 모듈도 개발하였다. 복수의 입력 파라미터의 사전분포에 대해 연속적으로 사후분포를 구해낼 수 있는 베이지안 업데이팅이 가능하도록 개발된 이 모듈을 GoldSim 템플릿 형태의 기존의 GSTSPA 프로그램으로 이행하여 보다 신뢰도 있는 확률론적 방사성폐기물 처분 시스템 안전성 평가가 가능하도록 하였다. 이는 기존에 존재하는 사전분포의 일반적인 형태는 취하되 새롭게 얻어지는 실제 측정치나 전문가들의 의견을 기존의 분포에 적용하여 보다 더 높은 믿음을 갖는 입력 파라미터의 사후분포를 얻을 수 있게 한다. 균열암반 내 핵종 이동에 관련된 몇 개의 입력 파라미터의 사전분포의 세차례의 연속적 업데이팅을 통해 프로그램의 유용성도 예시하였다. 이 연구를 통하여 처분시스템과 같이 장기적 평가가 필요하고 넓은 모델링 지역을 가지며 측정된 입력자료가 부족한 경우 보다 더 믿음직한 방법으로 안전성 평가를 수행할 수 있는 것을 보였다.
전통적인 OD조사에 의한 OD추정방법의 여러 문제점들로 인해 링크에서 관측된 교통량과 기존OD를 결합해 새로운 OD를 추정하고자 하는 연구들이 지속되고 있으며, 그 필요성도 증대되고 있다. 그러한 기법중의 하나가 Yang(1995)이 제시한 바이레벨 모형으로, 그는 일반화최소자승법을 풀기위한 Sensitivity Analysis Based (SAB)을 제시하였다. 그러나 SAB 알고리즘은 두가지 중요한 문제점을 가지고 있다. 첫 번째 문제는 실제 OD를 알기가 어렵기 때문에, 기존 OD 조사시의 통행패턴이 현재의 통행패턴과 큰 변화가 없다는 가정 하에, 기존 OD를 추정시 중요한 추정기준으로 설정한다는 점이다. 그러나 이러한 기존 OD에 대한 추정의 종속성으로 인해, SAB는 기존 OD와 실제 OD의 차이가 큰 경우 정확한 해를 도출하지 못하고 추정결과가 일관적(robust)이지 않게 도출된다. 두 번째 문제는 SAB는 통행패턴 추정시 선형근사화를 가정하기 때문에 게임이론적 측면에서 전제로 설정한 완전한 Stackelberg 상황을 구현하지 못한다는 점이다. 이러한 문제점을 피하기 위해서는 기존 OD의 오차나 관측교통량의 오차에 대해 일관적이고 안정적인 해도출 기법이 필요하다. 본 연구의 목적은 SAB를 비롯한 기존 바이레벨 OD추정기법의 문제점을 지적하고 이에 대한 대안기법을 제시하는 것이다. OD추정의 문제는 본질적으로 비선형이고 비볼록하기 때문에, 다중해를 도출하게 된다. 따라서 전역해 탐색기법이 필요한데, 본 연구에서는 전역최적화가 가능한 유전알고리즘(Genetic Algorithm)을 이용한 OD추정모형(GA-Model:GAM)을 제시하였다. 사례네트워크에 대한 비교분석결과, GAM은 기존 OD의 오타에 대해 크게 종속적이지 않으며 OD구조가 변하는 경우에도 추정이 가능하여, 일반적으로 실제 OD를 알 수 없는 (기존OD의 오차가 어느 정도인지를 알 수 없는) 도시부 네트워크에서 신뢰성있는 추정력을 보였다.
본 논문은 유전자 알고리즘을 이용한 새로운 레이더 펄스열 탐지 기법을 제안하며, 전자전 시스템의 위협식별을 위한 펄스열 분리에 사용될 목적으로 개발되었다. 기존의 펄스열 탐지는 히스토그램 혹은 연속 웨이브렛 변환을 이용한 결정론적 접근이 일반적이었으나, 전자전 신호환경에서 빈번히 발생하는 신호누락, 잡음 및 대전자전 레이더 신호에 대해서는 탐지 신뢰성이 떨어진다. 제안한 기법은 펄스 도래시간만을 이용하는 펄스열 탐지 기법으로서 유전자 알고리즘의 확률론적 특성을 이용하여 설계되었다. 본 기법에서는 펄스의 도래 시간차를 초기 염색체로 구성하였으며, 펄스위상을 정의하여 이를 이용한 적합도 검증을 수행하였다. 그리고 다중 신호원의 분리를 목적으로 하는 레이더 펄스열 탐지를 위해서 비용함수를 이용한 조기 종료 및 그룹화를 적용하였다. 제안한 기법을 이용하여 모의 레이더 신호에 대해 실험한 결과 기존의 방법에 비해 탐지 위협개수 및 펄스 반복 주기의 탐지 정확도가 향상되었음을 확인하였다.
If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.
This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.
As the lifetime of nuclear power plants (NPPs) reaches design life, the probability for fatal accidents increases. Most of accidents are known to be caused by degradation of mechanical components. Pressure tubes are the most important components in CANDU reactor. They are subjected to various aging mechanisms such as delayed hydride cracking (DHC), irradiation and corrosion, etc. Therefore, the integrity of pressure tube is key concern in CANDU reactor. Up to recently, conventional deterministic approaches have been utilized to evaluate the integrity of components. However, there are many uncertainties to prevent a rational evaluation. The objective of this paper is to assess the failure probability of pressure tube in CANDU. To do this, probability fracture mechanics (PFM) analysis based on the Genetic Algorithm (GA) is performed. For the verification of the analysis, a comparison of the PFM analysis using a commercial code and mathematical method is carried out.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.