• Title/Summary/Keyword: probabilistic study

Search Result 1,446, Processing Time 0.027 seconds

Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site (원자력 발전소 부지에 대한 확률론적 지진해일 재해도 분석의 적용)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.265-271
    • /
    • 2015
  • The tsunami hazard analysis is performed for testing the application of probabilistic tsunami hazard analysis to nuclear power plant sites in the Korean Peninsula. Tsunami hazard analysis is based on the seismic hazard analysis. Probabilistic method is adopted for considering the uncertainties caused by insufficient information of tsunamigenic fault sources. Logic tree approach is used. Uljin nuclear power plant (NPP) site is selected for this study. The tsunamigenic fault sources in the western part of Japan (East Sea) are used for this study because those are well known fault sources in the East Sea and had several records of tsunami hazards. We have performed numerical simulations of tsunami propagation for those fault sources in the previous study. Therefore we use the wave parameters obtained from the previous study. We follow the method of probabilistic tsunami hazard analysis (PTHA) suggested by the atomic energy society of Japan (AESJ). Annual exceedance probabilities for wave height level are calculated for the site by using the information about the recurrence interval, the magnitude range, the wave parameters, the truncation of lognormal distribution of wave height, and the deviation based on the difference between simulation and record. Effects of each parameters on tsunami hazard are tested by the sensitivity analysis, which shows that the recurrence interval and the deviation dominantly affects the annual exceedance probability and the wave heigh level, respectively.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

Probabilistic capacity spectrum method considering soil-structure interaction effects (지반-구조물 상호작용 효과를 고려한 확률론적 역량스펙트럼법)

  • Nocete, Chari Fe M.;Kim, Doo-Kie;Kim, Dong-Hyawn;Cho, Sung-Gook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.65-70
    • /
    • 2008
  • The capacity spectrum method (CSM) is a deterministic seismic analysis approach wherein the expected seismic response of a structure is established as the intersection of the demand and capacity curves. Recently, there are a few studies about a probabilistic CSM where uncertainties in design factors such as material properties, loads, and ground motion are being considered. However, researches show that soil-structure interaction also affects the seismic responses of structures. Thus, their uncertainties should also be taken into account. Therefore, this paper presents a probabilistic approach of using the CSM for seismic analysis considering uncertainties in soil properties. For application, a reinforced concrete bridge column structure is employed as a test model. Considering the randomness of the various design parameters, the structure's probability of failure is obtained. Monte Carlo importance sampling is used as the tool to assess the structure's reliability when subjected to earthquakes. In this study, probabilistic CSM with and without consideration of soil uncertainties are compared and analyzed. Results show that the analysis considering soil structure interaction yields to a greater probability of failure, and thus can lead to a more conservative structural design.

  • PDF

A Probabilistic Approach to Small Signal Stability Analysis of Power Systems with Correlated Wind Sources

  • Yue, Hao;Li, Gengyin;Zhou, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1605-1614
    • /
    • 2013
  • This paper presents a probabilistic methodology for small signal stability analysis of power system with correlated wind sources. The approach considers not only the stochastic characteristics of wind speeds which are treated as random variables with Weibull distributions, while also the wind speed spatial correlations which are characterized by a correlation matrix. The approach based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources and the consideration of spatial correlation has influence on the probability of system small signal stability.

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

Probabilistic Analysis of Equivalent Uniformly Distributed Live Loads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that the inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in the structural safety evaluation. Based on the successful developments of the reliability-based structural analysis and design, the design criteria of the standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability - based criteria for the domestic buildings, the probabilistic characteristic of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have been collected and analyzed in systematic manner, and their probabilistic characteristics have been studied. Based on the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Application of Probabilistic Technique for the Development of Fire Accident Scenarios in Railway Tunnel (확률론적 기법을 활용한 철도터널의 화재사고 시나리오의 구성)

  • 곽상록;홍선호;왕종배;조연옥
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.302-306
    • /
    • 2004
  • Many long railway tunnels without emergency evacuation system or ventilation system are under construction or in-use in Korea. In the case of tunnel-fire, many fatalities are occur in current condition. Current safety level is estimated in this study, for the efficient investment on safety. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, accident scenarios and survival ratio under tunnel fire accident are determined for various conditions.