• 제목/요약/키워드: probabilistic graphical model(PGM)

검색결과 3건 처리시간 0.019초

트랜잭션 데이터 분석을 위한 확률 그래프 모형 (Probabilistic Graphical Model for Transaction Data Analysis)

  • 안길승;허선
    • 대한산업공학회지
    • /
    • 제42권4호
    • /
    • pp.249-255
    • /
    • 2016
  • Recently, transaction data is accumulated everywhere very rapidly. Association analysis methods are usually applied to analyze transaction data, but the methods have several problems. For example, these methods can only consider one-way relations among items and cannot reflect domain knowledge into analysis process. In order to overcome defect of association analysis methods, we suggest a transaction data analysis method based on probabilistic graphical model (PGM) in this study. The method we suggest has several advantages as compared with association analysis methods. For example, this method has a high flexibility, and can give a solution to various probability problems regarding the transaction data with relationships among items.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

팩터그래프 모델을 이용한 연구전선 구축: 생의학 분야 문헌을 기반으로 (Construction of Research Fronts Using Factor Graph Model in the Biomedical Literature)

  • 김혜진;송민
    • 정보관리학회지
    • /
    • 제34권1호
    • /
    • pp.177-195
    • /
    • 2017
  • 연구전선이란 연구논문들 간에 인용이 빈번하게 발생하며, 지속적으로 발전이 이루어지고 있는 연구영역을 의미한다. 연구행위가 집중되는 핵심 연구분야로 발전 가능성이 높은 연구전선을 조기에 예측해내는 것은 학계와 산업계, 정부기관, 나아가 국가의 과학기술 발전에 큰 유익을 가져다 줄 수 있는 유용한 사회적 자원이 된다. 본 연구는 복합자질을 활용하여 연구전선을 추론하는 모델을 제시하고자 시도하였다. 연구전선 추론은 핵심 연구영역으로 발전할 가능성이 높은 문헌들이 포함될 수 있도록 문헌을 복합자질로 표현하고, 그 자질들을 심층학습하여 새로 발행된 문헌들이 연구전선에 포함될 수 있는지 그 가능성을 예측하였다. 서지 자질, 네트워크 자질, 내용 자질 등 복합자질 세트를 사용하여 문헌을 표현하고 피인용을 많이 받을 가능성이 있는 문헌을 추론하기 위해서 확률기반 팩터그래프 모델을 적용하였다. 추출된 자질들은 팩터그래프의 변수로 표현되어 합-곱 알고리즘과 접합 트리 알고리즘을 적용하여 연구전선 추론이 이루어졌다. 팩터그래프 확률모델을 적용하여 연구전선을 추론 구축한 결과, 서지결합도 4 이상으로 구축된 베이스라인 연구전선과 큰 차이를 보였다. 팩터그래프 기반 연구전선그룹이 서지결합 기반 연구전선그룹보다 문헌 간의 직접 연결정도가 강하며 연결 관계에 있지 않은 두 개의 문헌을 연결시키는 매개정도 또한 강한 집단으로 나타났다.