• 제목/요약/키워드: probabilistic fatigue assessment

검색결과 23건 처리시간 0.015초

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.