• Title/Summary/Keyword: probabilistic context-free grammar

Search Result 3, Processing Time 0.016 seconds

Driver's Behavioral Pattern in Driver Assistance System (운전자 사용자경험기반의 인지향상 시스템 연구)

  • Jo, Doori;Shin, Donghee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.579-586
    • /
    • 2014
  • This paper analyzes the recognition of driver's behavior in lane change using context-free grammar. In contrast to conventional pattern recognition techniques, context-free grammars are capable of describing features effectively that are not easily represented by finite symbols. Instead of coordinate data processing that should handle features in multiple concurrent events respectively, effective syntactic analysis was applied for patterning of symbolic sequence. The findings proposed the effective and intuitive method for drivers and researchers in driving safety field. Probabilistic parsing for the improving this research will be the future work to achieve a robust recognition.

TG-SPSR: A Systematic Targeted Password Attacking Model

  • Zhang, Mengli;Zhang, Qihui;Liu, Wenfen;Hu, Xuexian;Wei, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2674-2697
    • /
    • 2019
  • Identity authentication is a crucial line of defense for network security, and passwords are still the mainstream of identity authentication. So far trawling password attacking has been extensively studied, but the research related with personal information is always sporadic. Probabilistic context-free grammar (PCFG) and Markov chain-based models perform greatly well in trawling guessing. In this paper we propose a systematic targeted attacking model based on structure partition and string reorganization by migrating the above two models to targeted attacking, denoted as TG-SPSR. In structure partition phase, besides dividing passwords to basic structure similar to PCFG, we additionally define a trajectory-based keyboard pattern in the basic grammar and introduce index bits to accurately characterize the position of special characters. Moreover, we also construct a BiLSTM recurrent neural network classifier to characterize the behavior of password reuse and modification after defining nine kinds of modification rules. Extensive experimental results indicate that in online attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 275%, and respectively outperforms its foremost counterparts, Personal-PCFG, TarGuess-I, by about 70% and 19%; In offline attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 90%, outperforms Personal-PCFG and TarGuess-I by 85% and 30%, respectively.

Bracketing Input for Accurate Parsing

  • No, Yong-Kyoon
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.358-364
    • /
    • 2007
  • Syntax parsers can benefit from speakers' intuition about constituent structures indicated in the input string in the form of parentheses. Focusing on languages like Korean, whose orthographic convention requires more than one word to be written without spaces, we describe an algorithm for passing the bracketing information across the tagger to the probabilistic CFG parser, together with one for heightening (or penalizing, as the case may be) probabilities of putative constituents as they are suggested by the parser. It is shown that two or three constituents marked in the input suffice to guide the parser to the correct parse as the most likely one, even with sentences that are considered long.

  • PDF