• 제목/요약/키워드: probabilistic context-free grammar

검색결과 3건 처리시간 0.016초

운전자 사용자경험기반의 인지향상 시스템 연구 (Driver's Behavioral Pattern in Driver Assistance System)

  • 조두리;신동희
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권5호
    • /
    • pp.579-586
    • /
    • 2014
  • 본 논문은 문맥-자유 문법 (context-free grammar)를 이용하여, 차선변경 상황에서의 운전자의 행동패턴 인식을 하는 방법을 제안하는 것을 목표로 한다. 문맥-자유-문법은 기존 패턴인식 방식과는 대조적으로 유한적 기호로는 쉽게 표현될 수 없는 특징들을 비교적 손쉽게 표현할 수 있다. 이 방식을 적용하여, 동시에 여러 특징을 각각 고려해야 하는 좌표기반 데이터 처리 대신 심볼 시퀀스 방식 (symbolic sequence)을 패턴화하기 위해 구문론적 방식을 적용한다. 이 방법은 운전자와 안전 운전 분야 연구자들에게 효율적이고 보다 직관적인 방법으로 보다 더 효과적인 수행에 도움이 된다. 본 연구의 향후과제로 보다 안정적인 인식률을 획득하기 위해 확률적 구문분석 방법을 적용할 계획이다.

TG-SPSR: A Systematic Targeted Password Attacking Model

  • Zhang, Mengli;Zhang, Qihui;Liu, Wenfen;Hu, Xuexian;Wei, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2674-2697
    • /
    • 2019
  • Identity authentication is a crucial line of defense for network security, and passwords are still the mainstream of identity authentication. So far trawling password attacking has been extensively studied, but the research related with personal information is always sporadic. Probabilistic context-free grammar (PCFG) and Markov chain-based models perform greatly well in trawling guessing. In this paper we propose a systematic targeted attacking model based on structure partition and string reorganization by migrating the above two models to targeted attacking, denoted as TG-SPSR. In structure partition phase, besides dividing passwords to basic structure similar to PCFG, we additionally define a trajectory-based keyboard pattern in the basic grammar and introduce index bits to accurately characterize the position of special characters. Moreover, we also construct a BiLSTM recurrent neural network classifier to characterize the behavior of password reuse and modification after defining nine kinds of modification rules. Extensive experimental results indicate that in online attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 275%, and respectively outperforms its foremost counterparts, Personal-PCFG, TarGuess-I, by about 70% and 19%; In offline attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 90%, outperforms Personal-PCFG and TarGuess-I by 85% and 30%, respectively.

Bracketing Input for Accurate Parsing

  • No, Yong-Kyoon
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.358-364
    • /
    • 2007
  • Syntax parsers can benefit from speakers' intuition about constituent structures indicated in the input string in the form of parentheses. Focusing on languages like Korean, whose orthographic convention requires more than one word to be written without spaces, we describe an algorithm for passing the bracketing information across the tagger to the probabilistic CFG parser, together with one for heightening (or penalizing, as the case may be) probabilities of putative constituents as they are suggested by the parser. It is shown that two or three constituents marked in the input suffice to guide the parser to the correct parse as the most likely one, even with sentences that are considered long.

  • PDF