• 제목/요약/키워드: probabilistic approach method

검색결과 385건 처리시간 0.019초

BtPDR: Bluetooth and PDR-Based Indoor Fusion Localization Using Smartphones

  • Yao, Yingbiao;Bao, Qiaojing;Han, Qi;Yao, Ruili;Xu, Xiaorong;Yan, Junrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3657-3682
    • /
    • 2018
  • This paper presents a Bluetooth and pedestrian dead reckoning (PDR)-based indoor fusion localization approach (BtPDR) using smartphones. A Bluetooth and PDR-based indoor fusion localization approach can localize the initial position of a smartphone with the received signal strength (RSS) of Bluetooth. While a smartphone is moving, BtPDR can track its position by fusing the localization results of PDR and Bluetooth RSS. In addition, BtPDR can adaptively modify the parameters of PDR. The contributions of BtPDR include: a Bluetooth RSS-based Probabilistic Voting (BRPV) localization mechanism, a probabilistic voting-based Bluetooth RSS and PDR fusion method, and a heuristic search approach for reducing the complexity of BRPV. The experiment results in a real scene show that the average positioning error is < 2m, which is considered adequate for indoor location-based service applications. Moreover, compared to the traditional PDR method, BtPDR improves the location accuracy by 42.6%, on average. Compared to state-of-the-art Wireless Local Area Network (WLAN) fingerprint + PDR-based fusion indoor localization approaches, BtPDR has better positioning accuracy and does not need the same offline workload as a fingerprint algorithm.

확률론적 위험도평가를 위한 베이지안 기반의 파손확률 추정 모델링 연구 (A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method)

  • 김근원;신대한;최주호;신기수
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.619-624
    • /
    • 2013
  • 확률론적 수명예측은 파라미터들의 불확실성에 대하여 확률론적인 요소를 적용한다. 따라서 기존의 결정론적 수명해석 기법에 확률론적 기법을 적용하기 위해서는 파손확률을 이용한 위험도 평가가 필요하다. 본 연구에서는 항공기 구조물의 확률론적 위험도평가를 수행하기 위하여 파손확률 추정 모델링 기법을 연구하였다. 이를 위해 파라미터들의 확률론적 불확실성을 효과적으로 반영할 수 있는 베이지안 기법을 이용하여 파손확률을 모델링하고 실험 데이터를 이용하여 검증하였다. 연구결과 베이지안 기반의 파손확률 추정 모델링은 정량적인 파손확률을 계산하고 확률론적 위험도평가를 효과적으로 수행할 수 있음을 입증하였다.

순간전압강하 보상을 위한 확률론적 위험도 분석 연구 (Probabilistic Method of Risk Assessment in Voltage Sag Mitigation Studies)

  • 한종훈;장길수;박창현
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.236-243
    • /
    • 2010
  • 전력품질 문제는 다양한 산업분야에서 중요한 역할을 차지한다. 전력품질솔루션 선택의 폭은 점점 다양해지고 있으며, 특히 순간전압강하와 정전에 대한 보상장치를 선정하는 것은 전력회사나 수용가 모두에게 중요한 과제이다. 이것은 기술적인 관점에서 뿐만 아니라 경제적인 관점에서도 같이 고려되어야 하는데 불행히도 지금까지는 주로 경험에 의해 결정되어졌다. 본 논문에서는 순간전압강하 보상장치 선정을 위한 위험도 분석을 확정적 방법과 확률론적 방법으로 수명비용을 계산하여 두 가지 방법의 결과 해석에 대한 차이점을 모의사례를 통하여 비교하고자한다.

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Probabilistic real-time updating for geotechnical properties evaluation

  • Ng, Iok-Tong;Yuen, Ka-Veng;Dong, Le
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.363-378
    • /
    • 2015
  • Estimation of geotechnical properties is an essential but challenging task since they are major components governing the safety and reliability of the entire structural system. However, due to time and budget constraints, reliable geotechnical properties estimation using traditional site characterization approach is difficult. In view of this, an alternative efficient and cost effective approach to address the overall uncertainty is necessary to facilitate an economical, safe and reliable geotechnical design. In this paper a probabilistic approach is proposed for real-time updating by incorporating new geotechnical information from the underlying project site. The updated model obtained from the proposed method is advantageous because it incorporates information from both existing database and the site of concern. An application using real data from a site in Hong Kong will be presented to demonstrate the proposed method.

확률적 운전비계산 모형에 기초한 발전기 수입/순익 평가 방법론 개발 (An Efficient Revenue/Profit Evaluation Method Based on Probabilistic Production Costing Technique)

  • 박종배;신중린;김민수;전영환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권12호
    • /
    • pp.638-646
    • /
    • 2002
  • This paper presents an efficient algorithm for evaluating the Profit and revenue of generating units in a competitive electricity market based on the probabilistic production costing technique. The accurate evaluation of the profit and revenue of generating units for long-term perspectives is one of the most important issues in a competitive electricity market environment. For efficient calculation of the profit and revenue of generating units under the equivalent load duration curve(ELDC), a new approach to figure out the marginal plants and the corresponding market clearing prices during a time period in a probabilistic manner is developed. The mathematical formulation and illustrative application of the suggested method is presented.

순간정전을 고려한 배전계통에서의 신뢰도 평가-몬테카를로 방식의 적용 (Reliability Evaluation of Power Distribution Systems Considering the Momentary Interruptions-Application of Monte Carlo Method)

  • Sang-Yun Yun;Jae-Chul Kim
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권1호
    • /
    • pp.9-16
    • /
    • 2003
  • In this paper, we propose a reliability evaluation method considering the momentary interruptions of power distribution systems. The results of research are concentrated on two parts. One is the analytic and probabilistic reliability evaluation of power distribution system considering the momentary interruptions and the other is the reliability cost evaluation that unifies the cost of sustained and momentary interruptions. This proposed reliability cost evaluation methodology is also divided into the analytic and probabilistic approach and the time sequential Monte Carlo method is used for the probabilistic method. The proposed methods are tested using the modified RBTS (Roy Billinton Test System) form and historical reliability data of KEPCO (Korea Electric Power Corporation) system. Through the case studies, it is verified that the proposed reliability evaluation and its cost/worth assessment methodologies can be applied to the actual reliability studies.

확률론적 기법을 이용한 터널 지보시스템의 신뢰성 평가 (Reliability Assessment of Tunnel Support Systems Using a Probability-Based Method)

  • 박도현;박의섭;송원경;류동우
    • 터널과지하공간
    • /
    • 제20권1호
    • /
    • pp.39-48
    • /
    • 2010
  • 본 연구에서는 확률론적 기법을 토대로 터널 지보시스템의 신뢰성을 평가할 수 있는 프로그램을 개발하였다. 개발된 프로그램은 솔버로서 FLAC2D를 사용하며 수치해석과 확률론적 해석의 전 과정을 자동적으로 처리할 수 있다. 지반을 모델링한 수치해석시 상당한 계산시간이 소요되므로 시뮬레이션 기법을 적용하여 터널 지보시스템의 신뢰성을 확률론적으로 평가하는 것은 현실적으로 불가능하다. 따라서 본 연구에서는 샘플의 수를 시뮬레이션 기법에 비해 상당히 줄일 수 있어 확률론적 해석을 하는 데 효율적인 점추정법을 사용하였다. 본 연구에서 개발한 프로그램을 터널 프로젝트에 적용하여 결정론적 접근법에 의한 결과와 비교 분석하였다. 이로부터 확률론적 접근법은 파괴확률을 토대로 터널 지보시스템의 신뢰성을 정량적으로 평가할 수 있고 터널 지보설계시 의사결정의 도구로서 활용될 수 있다는 것을 확인하였다.

Weighted Finite State Transducer-Based Endpoint Detection Using Probabilistic Decision Logic

  • Chung, Hoon;Lee, Sung Joo;Lee, Yun Keun
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.714-720
    • /
    • 2014
  • In this paper, we propose the use of data-driven probabilistic utterance-level decision logic to improve Weighted Finite State Transducer (WFST)-based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame-level speech/non-speech classification based on statistical hypothesis testing, and the second process is a heuristic-knowledge-based utterance-level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST-based approach. However, a WFST-based approach has the same limitations as conventional approaches in that the utterance-level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data-driven probabilistic utterance-level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy-speech corpora collected for an endpoint detection evaluation.