• 제목/요약/키워드: pro-oxidant activity

검색결과 81건 처리시간 0.032초

Maltol, Kojic Acid, Levulinic Acid, Furfural, 5-Hydroxymethyl Furfural과 Pyrazine의 항산화작용 (Antioxidant Activity of Maltol, Kojic Acid, Levulinic Acid, Furfural, 5- Hydroxymethyl Furfural, and Pyrazine)

  • 이범홍;김동훈
    • 한국식품과학회지
    • /
    • 제14권3호
    • /
    • pp.265-270
    • /
    • 1982
  • 마이얄 갈색화반응의 중요한 중간생성체로 알려진 maltol, kojic acid, levulinic acid, furfural, 5-hydroxymethyl furfural(5-HMF)와 pryazine의 항산화작용을 조사하였다. 각 화합물의 작용은 이들 화합물의 0.01M의 농도로 들어있는 콩기름 기질들과 실험대조기질의 유도기간의 길이를 비교함으로써 추정하였다. 기질들은 $45.0{\pm}1.0^{\circ}C$에서 30일간 저장되었으며, 이들 기질의 과산화물값이 60 meq/kg oil가 되는데 소요된 시간으로써 그 기질의 유도기간으로 삼았다. 실험대조기질, kojic acid, 5-HMF, furfural, maltol, levulinic acid와 pyrazine의 유도기간은 각각 468, 592, 510, 498, 486, 450와 402시간 였었다. Kojic acid는 뚜렷한 산화방지작용을 갖고 있는 반면에 furfural와 5-HMF는 약한 작용을, maltol은 아주 약한 작용을 갖고 있었다. 한편, pryazine과 levulinic acid는 산화촉진작용을 보였었다. Pryazine은 뚜렷한 촉진작용을 보였으나, levulinic acid의 산화촉진작용은 매우 미약했었다.

  • PDF

Antioxidant activities of Erythrina stricta Roxb.using various in vitro and ex vivo models

  • AsokKumar, K;UmaMaheswari, M;Sivashanmugam, AT;SubhadraDevi, V;Subhashini, N;Ravi, TK
    • Advances in Traditional Medicine
    • /
    • 제8권3호
    • /
    • pp.266-278
    • /
    • 2008
  • Erythrina stricta, a deciduous tree widely used traditionally in indigenous system of medicine for various ailments such as rheumatism, fever, leprosy, epilepsy etc. The leaves of Erythrina stricta was extracted with ethanol (70%) and used for the evaluation of various in vitro antioxidant assays which includes H - donor activity, nitric oxide scavenging, superoxide anion scavenging, reducing ability, hydroxyl radical, hydrogen peroxide scavenging, total phenolic content, total flavonoid content, total antioxidant activity by thiocyanate and phosphomolybdenum method, metal chelating, $\beta$-carotene bleaching, total peroxy radical assays. The pro-oxidant activity was measured using bleomycin-dependent DNA damage. Ex vivo models like lipid peroxidation and erythrocyte haemolysis were also used to study the antioxidant property of the extract. The various antioxidant activities were compared with suitable standard antioxidants such as ascorbic acid, butylated hydroxyl toluene, $\alpha$-tocopherol, curcumin, quercetin and Trolox. The generation of free radicals viz. $O_2^{{\cdot}-}$, $OH^{\cdot}$, $H_2O_2$, $NO^{\cdot}$ and peroxyl radicals were effectively scavenged by the ethanolic extract of Erythrina stricta. In all the methods, the extract offered strong antioxidant activity in a concentration dependent manner. The total phenolic content, flavonoid content and total antioxidant activity in Erythrina stricta were determined as microgram (g) pyrocatechol, quercetin and $\alpha$-tocopherol equivalent/mg respectively. The extract did not exhibit any prooxidant activity when compared with ascorbic acid. The results obtained in the present study clearly indicates that Erythrina stricta scavenges free radicals and reduces lipid peroxidation, ameliorating the damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant.

Euryale ferox Salisbury의 항산화효과 및 LDL 산화 억제효과 탐색 (Screening of Antioxidative Effect and Suppressive Effect of LDL Oxidation of Euryale ferox Salisbury)

  • 김영환;이민자;이혜숙;김정국;박원환
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.92-99
    • /
    • 2011
  • Topical natural antioxidants are a useful strategy for the prevention of oxidative stress mediated cardiovascular disease including atherosclerosis. From the viewpoint of this underlying principle, the screening of natural plant extracts with scavenging activity for pro-oxidant reactive species is a primary requirement for the development of new topical antioxidant formulations. Euryale ferox Salisbury (EF) is botanical name and it's pharmaceutical name is EURYALES SEMEN (ES). The stems and branchs of EF have been used as a traditional herbal medicine for the treatment of dysentery, diarrhea, leucorrhoea, incontinence and paralysis of joint. In this study, the antioxidant activity of extract from EF was studied in vitro methods by measuring the antioxidant activity and free radical scavenging activity by TEAC and DPPH, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation. The EF extracts were found to have a potent scavenging activity, as well as an inhibitory effect on LDL oxidation. In conclusion, the EF extracts have antioxidative effects in vitro system, which can be used for developing pharmaceutical drug against oxidative stress and chronic degenerative disease such as atherosclerosis.

백작약 추출물이 항산화활성, LDL 산화 억제 및 혈전용해에 미치는 영향 (Preventive Effects of Peony Root Extracts on Oxidative Stress, Thrombosis and Atherosclerosis)

  • 박순기;이민자;정현정;이혜숙;김혁;나선택;박선동;박원환
    • 대한한의학회지
    • /
    • 제30권2호
    • /
    • pp.88-103
    • /
    • 2009
  • Objectives: There is currently increased interest in the identification of natural antioxidant compounds derived from various plants. Peony Root (PR) is used worldwide for the treatment of many types of cardiovascular disease including atherosclerosis and hypertension. It has been used in Korean traditional medicine for the treatment of glycosuria, hypertension and cancer. However, to date, no studies concerning the antioxidant properties of PR have been conducted. Therefore, this study was conducted to evaluate the in vitro scavenging activity, inhibitory effect of LDL oxidation of pro-oxidant reactive species and anti-thrombosis effect in response to treatment with PR using various screening methods including biological and non-biological oxidants. Methods: In this study, the antioxidant activity of extract from PR was studied with in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation and the inhibitory effect on collagen-induced platelet aggregation. Results: The PR extracts were found to have a potent scavenging activity of oxidative stress [DPPH, superoxide anion, hydroxyl radical, nitric oxide and peroxynitrite, etc.] as well as an inhibitory effect on LDL oxidation and on platelet aggregation. Conclusions: The PR extracts have anti-oxidative and anti-atherosclerotic effects in vitro system, which can be used for developing pharmaceutical drugs against oxidative stress and atherosclerosis.

  • PDF

백단향추출물의 항산화, 항혈소판 응집 및 혈전 용해능에 관한 연구 (Preventive Effects of Santalum album L. Extracts on Oxidation, Platelet Aggregation and Thrombosis)

  • 송영위;이지현;송규주;구병수;김근우
    • 동의신경정신과학회지
    • /
    • 제23권1호
    • /
    • pp.115-128
    • /
    • 2012
  • Objectives : To evaluate the in vitro scavenging activity, inhibitory effect of LDL oxidation of pro-oxidant reactive species, anti-platelet aggregative effects and anti-thrombosis effects in response to treatment with SA using various screening methods including biological and non-biological oxidants. Methods : The antioxidant activity concerning extract from SA was studied with in vitro methods by measuring the antioxidant activity by TEAC, measuring the scavenging effects on reactive oxygen species (ROS) [superoxide anion, hydroxyl radical] and on reactive nitrogen species (RNS) [nitric oxide and peroxynitrite] as well as measuring the inhibitory effect on $Cu^{2+}$-induced human LDL oxidation and the inhibitory effect on thrombin-induced platelet aggregation and thrombosis. Results : SA extracts were found to have a potent scavenging activity regarding oxidative stress as well as an inhibitory effect towards LDL oxidation, platelet aggregation, and thrombosis. Conclusions : The SA extracts have anti-oxidative and anti-atherosclerotic effects in vitro system, which can be used for developing pharmaceutical drugs against oxidative stress and atherosclerosis.

고려인삼의 비사포닌 성분에 대한 화학적 및 생화학적 연구 (Chemical and Biochemical Studies on Non-saponin Constituents of Korean Ginseng)

  • Han, Byung-Hoon;Park, Myung-Hwan;Han, Yong-Nam
    • Journal of Ginseng Research
    • /
    • 제16권3호
    • /
    • pp.228-234
    • /
    • 1992
  • There has been general tendency to explain the traditional ginseng efficacy through the pharmacological and biochemical activities of ginsenosides. However, when we analyze the pharmacological and biological data on ginseng reported yet, we can easily arrive at the conclsion that most of the data on pharmacological and biological activities must have been obtained using impure ginsenoside samples, which should contain some non-saponin constituents as impurities. Based on the above back-ground, the non-saponin constituents of ginseng were studied in our laboratory. Phenolic substances including Maltol, Vanillic Acid, Salicylic Acid, Ferrulic Acid and Caffeic acid and impure ginsenoside samples were found to show strong antioxidant and anti-fatigue activities, while pure ginsenosides were devoid of the activities. Maltol, one of antioxidant components In Korean red ginseng drew a special interest due to its very low pro-oxidant activity. The antioxidant activity of ginseng may be considered as scientific basis for the antiageing activity which was described in traditional medicinal material book as "long-term medication of ginseng will improve bio-efficiency and extend life-span" The lignin components, another non-saponin consitutents, isolated from ginseng extract In our laboratory may eplain the hepato-protective activity of ginseng which has been repeatedly rtaimed as one of the efficacies of ginsenosides. The P-carboline alkaloids isolated in our laboratory as one of the non-saponin constituents of ginseng may play some pharmacological activities which should also be investigated. Present paper will include chemistry and biochemical aspects of the non-saponin constituents of ginseng with special interests for the explanation of traditional ginseng efficacy on modern scientific basis.fic basis.

  • PDF

Macrophage Migration Inhibitory Factor (MIF) Interacts with Bim and Inhibits Bim-mediated Apoptosis

  • Liu, Lingfeng;Chen, Jinzhong;Ji, Chaoneng;Zhang, Jiayi;Sun, Junlei;Li, Yao;Xie, Yi;Gu, Shaohua;Mao, Yumin
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.193-199
    • /
    • 2008
  • The pro-apoptotic Bcl-2 family member Bim acts as a sensor for apoptotic stimuli and initiates apoptosis through the mitochondrial pathway. To identify novel regulators of Bim, we employed the yeast two-hybrid system and isolated the human gene encoding macrophage migration inhibitory factor (MIF), a ubiquitously expressed proinflammatory mediator that has also been implicated in cell proliferation, the cell cycle and carcinogenesis. The interaction between MIF and Bim was confirmed by both in vitro and in vivo protein interaction assays. Intriguingly, protein complexes between MIF and the three major Bim isoforms (BimEL/BimL/BimS) could be detected in HEK293 and K562 cells, especially in cells undergoing apoptosis. Moreover, exogenous expression of MIF partially inhibited Bim-induced apoptosis in HEK293 cells. SiRNA-mediated knockdown of MIF increased apoptosis in K562 cells exposed to the chemical oxidant diamide. Endogenous MIF may regulate the pro-apoptotic activity of Bim and inhibit the release of cytochrome c from mitochondria.

Quercetin-3-O-β-D-Glucuronide Suppresses Lipopolysaccharide-Induced JNK and ERK Phosphorylation in LPS-Challenged RAW264.7 Cells

  • Park, Jin-Young;Lim, Man-Sup;Kim, Song-In;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.610-615
    • /
    • 2016
  • Quercetin, a flavonol, has been reported to exhibit a wide range of biological properties including anti-oxidant and anti-inflammatory activities. However, pharmacological properties of quercetin-3-O-${\beta}$-D-glucuronide (QG), a glycoside derivative of quercetin, have not been extensively examined. The objective of this study is to elucidate the anti-inflammatory property and underlying mechanism of QG in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells in comparison with quercetin. QG significantly suppressed LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and pro-inflammatory protein expressions of iNOS and COX-2. To elucidate the underlying mechanism of the anti-inflammatory property of QG, involvement of MAPK signaling pathways was examined. QG significantly attenuated LPS-induced activation of JNK and ERK in concentration-dependent manners with a negligible effect on p38. In conclusion, the present study demonstrates QG exerts anti-inflammatory activity through the suppression of JNK and ERK signaling pathways in LPS-challenged RAW264.7 macrophage cells.

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

Accumulation of Chlorogenic Acid as a near UV-shielding Compound in Cauliflower Grown under Enhanced UV-B Radiation

  • Shibata, Hitoshi;Tanaka, Tomoyuki;Yonemura, Takeshi;Sawa, Yoshihiro;Ishikawa, Takahiro
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.436-438
    • /
    • 2002
  • Since solar radiation contains wavelength essential for photosynthesis accompanying with near-UV light, UV-B effects on biological parameters and acclimation mechanisms are influenced by photosynthetically active radiation (PAR). Therefore, to elucidate near-UV shielding mechanism in higher plants, we cultivated cauliflower under usual solar radiation and increased UV-B from fluorescent lamps, two- or three-fold excess over continuously estimated UV-B dose in PAR during daytime, using computer regulated systems. Increased UV-B radiation had little effect on growth expressed as fresh weigh and leaf area. Water soluble low molecular weight compounds showing absorption in near UV region were enhanced according to the irradiated UV-B dose. One of compounds in cauliflower leaves was identified as chlorogenic acid. This was found to have no near-UV photosenSitizerable activity and is known to have an ability to scavenge a wide species of active oxygen. Another pro-oxidant compound that generates superoxide anion radical under near-UV irradiation was not induced by increased UV-B during cultivation, and identified as lumazine, a degradation product from folic acid.

  • PDF