Smart City is highly anticipated to solve the problems of existing cities and create new added value, but there is also increasing concern about security risks. The negative view of smart city according to security risk awareness is a problem that needs to be improved in order to activate the fourth industrial revolution technology and develop smart city. This study examined risk factors in smart cities based on perceived risk and user resistance theory, and empirically analyzed the relationship with resistance attitudes. According to the empirical analysis with 288 research samples, security, social, and physical risk factors directly affect smart city resistance, while financial, performance, and privacy risk have no significant effect. In addition, it was verified that the security risk can is an antecedent factor for other risk factors, and it was confirmed that it is required to separately discuss the security and privacy risk in the smart city environment. This study shows that it is necessary to prepare policy supports for social interactions as well as security and physical safety issues in order to activate smart city by discussing the risk factors that negatively affect smart city perception from the public's point of view.
Kim, Jina;Jeong, Jae Yeol;Kim, Kee Sung;Jeong, Ik Rae
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.3
/
pp.565-577
/
2019
In recent years, biometric authentication has been used for various applications. Since biometric features are unchangeable and cannot be revoked unlike other personal information, there is increasing concern about leakage of biometric information. Recently, Jin et al. proposed a new cancelable biometric scheme, called "Index-of-Max" (IoM) to protect fingerprint template. The authors presented two realizations, namely, Gaussian random projection-based and uniformly random permutation-based hashing schemes. They also showed that their schemes can provide high accuracy, guarantee the security against recently presented privacy attacks, and satisfy some criteria of cancelable biometrics. However, the authors did not provide experimental results for other biometric features (e.g. finger-vein, iris). In this paper, we present the results of applying Jin et al.'s scheme to iris data. To do this, we propose a new method for processing iris data into a suitable form applicable to the Jin et al.'s scheme. Our experimental results show that it can guarantee favorable accuracy performance compared to the previous schemes. We also show that our scheme satisfies cancelable biometrics criteria and robustness to security and privacy attacks demonstrated in the Jin et al.'s work.
The Journal of the Convergence on Culture Technology
/
v.7
no.1
/
pp.595-607
/
2021
In response to increasing demand of contactless services, the overall usage of "task-oriented chatbots" in the industry is on the rise. The purpose of a task-oriented chatbot is to raise the efficiency of data sharing and workflow; in order to establish a guideline, there must be a discussion on "what" and "how" to share information. We investigate the effects of personalization and different types of the interface on 'performance expectancy', 'effort expectancy', 'intention to use', and 'satisfaction' in the context of a task-oriented chatbot. Results show that 'intention to use' and 'satisfaction' were higher when the level of personalization was higher. Within the closed-discourse interface, 'intention to use' and 'satisfaction' were higher when personalization was lower. We highlight the practical insights in the use of personalization and types of chatbot interface based on 'perceived personalization', 'expectation disconfirmation theory', 'privacy concern' and 'privacy paradox'.
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.303-311
/
2022
The tremendous growth of the Internet of things is unbelievable. Many IoT devices have emerged on the market over the last decade. This has made our everyday life easier inside our homes. The technology used at home has changed significantly over the past several decades, leading to what is known today as the smart home. However, this growth has also brought new challenges to our home security and privacy. With the smart home becoming more mainstream, cybersecurity issues have become a fundamental concern. The smart home is an environment where heterogeneous devices and appliances are interconnected through the Internet of Things (IoT) to provide smart services to residents. These services include home climate control, energy management, video on demand, music on-demand, remote healthcare, remote control, and other similar services in a ubiquitous manner. Smart home devices can be controlled via the Internet using smartphones. However, connecting smart home appliances to wireless networks and the Internet makes individuals vulnerable to malicious attacks. Remote access within the same environment or over the Internet requires an effective access control mechanism. This paper intends to shed light on how smart home devices are working as well as the type of security and privacy threats of the smart home. It also illustrated the types of authentication methods that can be used with smart home devices. In addition, a comparison of Smart home IoT-based security protocols was presented along with a security countermeasure that can be used in a smart home environment. Finally, a few open problems were mentioned as future research directions for researchers.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.742-756
/
2022
A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.
As an empirical study on the psychological side effects of using Social Networking Services (SNS), this study aims to identify the reality of negative emotion of using SNS and to predict its consequences. To this end, a measurement tool was developed through literature review, in-depth interview with users and expert review to induce negative emotional factors that can arise while using SNS. An exploratory factor analysis was performed for a total of 24 measurement items, which then were divided into the following 6 factors: 'concern over privacy,' 'burden from undesired connection,' 'relative deprivation,' 'a sense of alienation,' 'concern over reputation' and 'negative feeling about simple relationship.' Also, the relationship between the 6 negative emotional factors and psychological dissonance was analyzed. The results indicate that all the factors, except relative deprivation and a sense of alienation, affect psychological dissonance. It was also found that psychological dissonance, which implies a conflicting condition from using SNS, significantly affects the behavior that possibly reduces and limits the use of SNS. In other words, the users who have experienced psychological dissonance respond passively by avoiding the use of SNS to resolve the dissonance. The results of this study provide the base for explaining the psychological side effects of using SNS, which have been understood at a phenomenal level, such as 'Facebook depression' or 'SNS stress.' In addition, this study is of significance as it helps understand the psychological mechanism by identifying the relationship between negative emotion and use behavior with the theory of cognitive dissonance.
Kim, Taeha;Cha, Hoon S.;Park, Chanhi;Wi, Jong Hyun
Knowledge Management Research
/
v.21
no.4
/
pp.211-225
/
2020
We investigate factors affecting chatbot use intention of online shopping mall users. We identify theoretical foundations from the literature and postulate that accuracy, personalization level, intelligence, intimacy, social presence, and piracy concern should affect intention to use more or negative intention to use. Based on 300 responses from online shopping mall chatbot users in Korea, we run the statistical analysis to assure the reliability and validity of the measurements. From the multiple regression analysis, we find that personalization level, intelligence, social presence, and privacy concerns significantly affect intention to use more. In contrast, we find that accuracy and privacy concerns significantly affect negative intention to use. This work will present pragmatic implications upon the design and management of chatbot in order to not only incent customers to use more but reduce factors that may cause negative use intention. Among functional factors, personalization and intelligence increases the intention to use more while accuracy decreases negative intention to use. Among emotional factors such as intimacy and social presence, we find that only social presence significantly increases intention to use more. Privacy concerns is found to decrease intention to use and increase negative intention to use.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.12
/
pp.291-306
/
2020
Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.5
/
pp.1245-1255
/
2015
As cloud computing services become popular, the concern on the data security of cloud services increases and the efforts for the data security become essential. In this paper, we describe the pros and cons of cloud computing including the definition of cloud. Then, we discuss the regulations about the protection of user data defined in cloud promotion act. Previous studies related to the privacy protection and the entrustment of personal information in cloud computing are reviewed. We examine how to store the personal information depending on the cloud service model. As a result, we argue that the entrustment of personal information should vary according to the cloud service model and we propose how to protect the personal information on IaaS and SaaS cloud service models.
The Purpose of this study is to empirically examine the factors that affect the consumer's buying behavior under the e-commerce environment. In order to achieve this goal, vendor characteristics, securities of transaction, concern for privacy, shopping orientation and perceived channel utilities were used as independent variables. Findings of study indicated that the concerns for abusing individual information, perceived securities of transaction, consumer's recreational orientation, consumer's convenience orientation, perceived distribution channel are the robust predictors of buying behavior of internet users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.